(Не)совершенная случайность. Как случай управляет нашей жизнью
Шрифт:
Свое увлечение он скрывает и от семьи, и от коллег по работе, выдумывая разные предлоги, чтобы вечером ускользнуть из дому. Наконец жена узнает, что он вовсе не засиживается за работой допоздна, как он говорит. Она думает: вероятность того, что он лжет о сверхурочной работе, гораздо больше при условии, что у него любовная связь, нежели при условии, что никакой любовной связи нет. И приходит к выводу: он все-таки лжет. Однако жена ошибается не столько в своих выводах, сколько в рассуждениях: она путает вероятность того, что муж избегает ее, если у него связь, с вероятностью того, что у него связь, если он ее избегает.
Это довольно распространенная ошибка. Предположим, начальник стал отвечать на ваши электронные письма с запозданием. Многие сочтут это знаком скорого заката собственной карьеры, потому что если вашей карьере подходит конец, велика вероятность того, что босс перестает отвечать на ваши письма оперативно. Однако босс может запаздывать с ответом и потому, что занят или у него заболела мать. Так что вероятность того, что ваша карьера подходит
На вероятность влияет тот факт, что событие произойдет, если или при условии, что произойдут другие события. В этом и заключается теория Байеса. Чтобы понять принцип ее действия, обратимся к другой задаче, которая имеет отношение к задаче о двух дочерях из главы 3. Предположим, что у двоюродной сестры двое детей. По условию задачи о двух дочерях вам известно, что один ребенок или оба — девочки, и вы пытаетесь вспомнить, как же оно на самом деле: одна девочка или две? Если в семье двое детей, какова вероятность (при условии, что один ребенок — девочка) того, что оба ребенка — девочки? В главе 3 мы не подходили к задаче с такой стороны, однако это «если» переводит задачу в плоскость условных вероятностей. Если бы это «если» отсутствовало, вероятность того, что оба ребенка — девочки, была бы равна 1 из 4 случаев, то есть 4 вариантов очередности рождения (мальчик, мальчик), (мальчик, девочка), (девочка, мальчик), (девочка, девочка). Однако дополнительные сведения о том, что в семье одна девочка точно есть, сводит вероятность к 1 из 3. И это потому, что если один из детей — девочка, для этой семьи существуют всего 3 возможных варианта — (мальчик, девочка), (девочка, мальчик), (девочка, девочка), и лишь 1 из 3 соответствует исходу, при котором оба ребенка — девочки. Возможно, это простейший способ понять идеи Байеса — все дело исключительно в подсчетах. Сначала надо обозначить пространство элементарных событий, то есть сделать список всех возможностей, а вместе с ними и их вероятностей, если они не равны (вообще-то способ хорош для решения любой запутанной задачи на тему вероятностей). Далее надо вычеркнуть те возможности, которые исключаются условиями (в данном случае условие: «хотя бы один ребенок — девочка»). В остатке: возможности и соответствующие им вероятности.
Возможно, все это покажется очевидным. Ничуть не усомнившись в своих силах, вы решите, что могли бы додуматься до этого и без помощи дражайшего преподобного Байеса, после чего дадите себе слово, что когда уединитесь в уборной в следующий раз, захватите почитать какую-нибудь другую книжку. Поэтому прежде чем мы продолжим, рассмотрим несколько измененную задачу про двух дочерей — ее решение может оказаться гораздо более неожиданным{103}.
Вариант таков. В семье двое детей; какова вероятность того, что если один из детей — девочка по имени Флорида, то и другой ребенок тоже девочка? Да, вам не показалось: я назвал девочку Флоридой. Может, вы и подумаете на имя, что оно выбрано наугад, на самом деле это не так — кроме того, что оно обозначает название штата, где полно кубинских иммигрантов, апельсинов и пожилых людей, которые меняют свое просторное жилье в северной части страны на радость обозревать пальмы и играть в бинго, это еще и настоящее имя. В самом деле, оно входит в 1 000 самых популярных женских имен за первые тридцать лет прошлого века в Америке. Я выбрал его совсем неспроста, потому что часть загадки заключается в вопросе: есть ли что-то в имени Флорида, что влияет на вероятность, и если есть, то что? Однако я забегаю вперед. Прежде чем мы продолжим, обдумайте такой вопрос: если брать задачу с девочкой по имени Флорида, остаются ли шансы на семью из двух девочек такими же: 1 из 3 (как в задаче с двумя дочерьми)?
Ответ отрицательный, и я вкратце объясню, почему. Тот факт, что одну из девочек зовут Флорида, меняет шансы на 1 из 2. Может, вам сложно представить такое, однако не стоит переживать по этому поводу. Ключ к пониманию случайности, да и вообще математики заключается не в том, чтобы решить любую задачу мгновенно на интуитивном уровне, а воспользоваться соответствующими средствами и вычислить ответ.
Те, кто сомневался в существовании Байеса, были правы в одном: Байес не опубликовал ни одного научного труда. О его жизни нам известно немного, возможно, он занимался математикой в свое удовольствие и не испытывал потребности в собеседниках. В этом отношении и в некоторых других они с Якобом Бернулли были полными противоположностями. Бернулли сопротивлялся изучению богословия, а Байес совмещал теологию и математику. Бернулли гнался за славой, а Байеса она совершенно не привлекала. И, наконец, теорема Бернулли решает следующий вопрос: сколько получится орлов, если планируется произвести много бросков идеальной монеты, в то время как Байес исследовал
Существование теории, благодаря которой Байес нам и известен, обнаружилось 23 декабря 1763 г., когда другой священнослужитель и математик, Ричард Прайс, прочел в Королевском обществе, этой британской национальной академии наук, доклад по научной работе. Работа, названная Байесом «Эссе о решении проблем в теории случайных событий», была опубликована в «Philosophical Transactions» Королевского общества в 1764 г. Байес оставил работу Прайсу по завещанию, вместе со 100 фунтами. По свидетельству Прайса, этого «как я полагаю, священника из Ньюингтон Грин», как высказался о нем Байес, автор «Эссе» умер спустя четыре месяца после того, как написал завещание{104}.
Хотя Байес и упомянул Ричарда Прайса вскользь, мимоходом, на самом деле Прайс отнюдь не был никому не известным священником. Его знали как пропагандиста свободы вероисповедания, друга Бенджамина Франклина, человека, которому Адам Смит доверил критический обзор некоторых частей чернового варианта «Исследования о природе и причинах богатства народов». Кроме всего прочего, Ричард Прайс был известным математиком. В заслугу ему ставят также основание страховой статистики, история которой началась с того, что в 1765 г. трое служащих из страховой компании «Equitable Society» обратились к Прайсу за помощью. Спустя шесть лет Прайс опубликовал свою работу в виде книги под названием «Заметки о страховых выплатах». И хотя книга, своего рода Библия для экспертов-статистиков из страховых учреждений, прослужила вплоть до XIX в., Прайс по-видимому недооценил среднюю продолжительность жизни — из-за недостаточности сведений и ненадежного метода подсчетов. В результате неоправданно завышенные страховые взносы обогатили его приятелей из «Equitable Society». С другой стороны, незадачливое британское правительство, производившее свои ежегодные выплаты исходя из таблиц Прайса, потерпело убытки: к ожидаемому по табличным данным сроку пенсионеры по-прежнему оставались в добром здравии.
Как я уже говорил, Байес разработал условную вероятность в попытке ответить на тот же вопрос, который увлек Бернулли: как по известному факту события вычислить вероятность того, что оно было вызвано данной причиной? Если в процессе клинических испытаний лекарство помогло 45 пациентам из 60, каковы шансы того, что лекарство подействует и на следующего пациента? Если оно помогло 600 000 пациентов из 1 млн, шансы того, что оно подействует, приближаются к 60%. Однако к какому выводу вы придете, если будете исходить из испытаний меньшего масштаба? Байес задался и другим вопросом: если перед испытаниями у вас были основания верить в то, что лекарство эффективно лишь на 50%, насколько весомыми окажутся новые сведения для ваших дальнейших оценок? Наш жизненный опыт в основном выглядит следующим образом: мы наблюдаем сравнительно небольшую выборку исходов, а уже из этого выводим информацию и приходим к заключению относительно качеств, которые привели к подобным исходам. Как нам следует выводить информацию?
Байес задумал решить задачу через метафору{105}. Предположим, нам выдали квадратный стол и два мяча. Первый мяч мы катим по столу таким образом, чтобы имели место равные вероятности: мяч остановится в любой точке. Наша цель — определить, не глядя, где именно вдоль всей оси слева направо мяч остановился. При этом наше орудие — второй мяч, который мы поначалу тоже будем неоднократно катать по столу тем же самым образом, что и первый. С каждым разом специально поставленный для этого человек будет записывать, где именно, справа или слева от первого мяча, остановился второй мяч. В конце человек сообщит нам общее количество попыток, во время которых второй мяч останавливался в каждом из двух основных направлений. Первый мяч представляет собой то неизвестное, о чем мы хотели узнать, второй мяч представляет собой свидетельства, которые нам удалось собрать. Если второй мяч будет раз за разом останавливаться справа от первого мяча, можно быть в достаточной степени уверенным, что первый мяч останавливается в дальнем левом углу стола. Если он останавливается — не так последовательно, раз за разом — мы будем в меньшей степени уверенными в своем выводе или же предположим, что первый мяч находится в дальнем правом углу. Байес продемонстрировал, как, опираясь на сведения о втором мяче, определять точную вероятность того, что первый мяч находится в любой данной точке рядом с осью слева направо. И продемонстрировал, как при наличии дополнительных сведений можно пересмотреть первоначальные подсчеты. Согласно терминологии Байеса, первоначальные подсчеты называются априорной вероятностью, а новые предположения — апостериорной вероятностью.
Байес затеял эту игру по той простой причине, что она моделирует многие решения, которые мы принимаем в жизни. В примере с испытаниями лекарства положение первого мяча представляет собой истинную эффективность лекарства, а то, что говорится о втором мяче, представляет собой информацию о пациенте. Положение первого мяча может также обозначать интерес к фильму, качество изделия, умение водить машину, усердную работу, упрямство, талант, способность — да что угодно, что определяет успех либо неудачу того или иного предприятия. Сообщения о втором мяче в таком случае обозначали бы наши наблюдения либо полученные нами данные. Теория Байеса демонстрирует, как производить оценку и согласовывать ее при наличии новой информации.