Необъятный мир: Как животные ощущают скрытую от нас реальность
Шрифт:
Электрическое поле как нельзя лучше подходит для коммуникации, поскольку оно, в отличие от звука, не искажается. Его не поглощают препятствия. Оно не отражается эхом. Оно даже не перемещается – оно просто мгновенно заполняет пространство между той особью, которая его излучает, и той, которая его улавливает[226]. Это значит, что электрическая рыба может кодировать информацию в микроструктуре своих разрядов, не опасаясь, что послание исказится. Из главы о слухе мы помним, что зебровые амадины обращают внимание на темпоральную микроструктуру трелей – то есть на изменение высоты тона за тысячные доли секунды. Электрические рыбы делают то же самое со своими электрическими разрядами, только в пределах миллионных долей секунды. Даже в самый простой сигнал они умудряются уместить море информации.
Некоторые
Другие виды, такие как черная ножетелка и стеклянный нож, издают импульсы настолько часто, что они сливаются в непрерывную волну, словно на скрипке тянут смычком одну бесконечную ноту. Частота такой волны может отличаться в зависимости от вида (а иногда и пола), и рыбы регулируют ее с невероятной точностью. Как установил нейроученый Тед Буллок, период осцилляции электрического поля черной ножетелки обычно составляет 0,001 секунды, с ничтожной погрешностью в 0,00000014 секунды{722}. Это один из самых точных хронометров в природе, настолько точный, что приборы Буллока эту погрешность едва уловили[227]. Незначительно меняя частоту этих тщательно контролируемых сигналов, волновые электрические рыбы могут о чем-то сообщать{723}. Резко и ненадолго повышая частоту, они издают «чириканье» – «короткое и отрывистое при стычках с неприятелем и более мягкое, шуршащее при ухаживании», как описывали его Мэри Хагедорн и Уолтер Хайлигенберг[228]{724}.
Такие послания передаются недалеко, но радиус действия электрокоммуникации не настолько ограничен, как у активной электролокации. При электролокации рыба может увеличить радиус восприятия, только усилив электрическое поле, а для этого ей с определенного момента просто не хватит энергии. Но, «слушая» электрические сигналы другой рыбы, ей вообще не нужно генерировать поле. Достаточно более чувствительных электрорецепторов, а их развить все-таки проще. Если добычу рыба чует только на расстоянии 2–3 см от себя, то сигналы другой электрической рыбы она улавливает за метр и больше. В перцептивном тумане, о котором говорил Малкольм Макайвер, рыба рыбу видит издалека.
Особенно важна электрокоммуникация для одной группы мормировых – слонорылов, которые отточили это умение до невиданного совершенства. У всех мормировых имеется уникальная разновидность сверхчувствительных электрорецепторов, называемых «клубневидными» (от немецкого Knollenorgan). Они не используются для электролокации и ориентированы только на электрические сигналы других рыб. Слонорылы доработали эти особые рецепторы еще немного, перенастроив их на распознание микроструктуры электрических сигналов, которую другие мормировые не воспринимают{725}. Как говорит Брюс Карлсон, открывший эти различия, у слонорылов как будто выработался электрический аналог цветного зрения, тогда как остальные мормировые довольствуются монохромным.
Карлсон подозревает, что толчком к этим эволюционным изменениям послужили перемены в общественной жизни рыб{726}. Мормировые с более простыми клубневидными рецепторами живут большими стаями в открытой воде. Им достаточно понимать, не отбились ли они от остальных и где те находятся. Слонорылы же обитают у самого дна темных рек, в основном поодиночке, каждый на своем участке. «Обнаружив другую рыбу, они желают точно знать, где она и кто она, – комментирует Карлсон. –
Во-первых, слонорылы очень разнообразны. Способность чувствовать мельчайшие вариации в электрических сигналах друг друга позволяет им превращать эти едва заметные особенности в критерий выбора полового партнера. В результате одна популяция быстро распадается на две, каждая со своими электрическими предпочтениями и соответствующим им сигналом. Этот процесс называется половым отбором, и у слонорылов он работает с очень высокой скоростью. Диверсификация электрических сигналов у этих рыб происходит в десять раз быстрее, чем у других мормировых, и новые виды появлялись тут в 3–5 раз чаще, чем во всех других изученных случаях. В настоящее время существует как минимум 175 видов слонорылов, тогда как всех остальных мормировых насчитывается всего около 30 видов. Точность в чувствах ведет к разнообразию форм.
Во-вторых, у слонорылов развился более сложный мозг – возможно, отчасти чтобы обрабатывать информацию, которую считывают их прокачанные клубневидные рецепторы. У одного из видов слонорылов, убанги, он же гнатонем Петерса, на мозг приходится 3% от массы тела и 60% потребления кислорода[229]{727}. «Казалось бы, с таким мозгом они должны строить замки или сочинять симфонии, – говорит занимающийся ими Нейт Сотелл. – Ничего подобного мы не наблюдаем, но все равно по ним с первого взгляда понятно, что это вам не золотые рыбки. Они очень даже себе на уме».
Для иллюстрации он показывает мне группу убанги, содержащихся в его нью-йоркской лаборатории. У этих рыб длинное сплющенное тело коричневого цвета и раздвоенный хвост, а впереди имеется подвижный отросток, который тоже на немецкий манер называется Schnauzenorgan, «мордовый орган». Из-за него их и называют слонорылами, однако отросток этот является продолжением подбородка, а не носа, так что представляйте себе египетских фараонов, а не Пиноккио. Если другие электрические рыбы, которых я видел, были безмятежны и величавы, эти выглядели суетливыми истериками[230]. Вот они исследуют электроды, которые Сотелл погрузил в воду. Прощупывают песчаное дно аквариума своими отростками, в которых сосредоточено особенно много электрорецепторов{728}. Иногда два убанги зависают в воде «валетом» – так что хвостовые электрические органы одного оказываются рядом с головными электрорецепторами другого – и отчаянно гудят, как если бы двое певцов горланили песню друг другу в ухо. Они гоняются друг за другом. Они, судя по всему, играют[231].
Наблюдая за убанги, я пытаюсь представить, каково это, когда взаимодействие с себе подобными построено на электрических сигналах. Этим рыбам никуда друг от друга не спрятаться. Генерируя электрические разряды для прощупывания окружающей среды, они неизбежно выдают себя всем прочим электрическим рыбам в радиусе распространения поля. Река, полная электрических рыб, напоминает вечеринку, где никто ни на миг не умолкает, тараторя даже с набитым ртом.
И вот что меня, собственно, озадачивает: эти рыбы используют одни и те же разряды и для ориентирования в пространстве, и для коммуникации. Чтобы подавать сигналы другим рыбам, они генерируют то же самое поле, что и для электролокации. Из этого простого факта следует, что, меняя электрическое поле для передачи сообщений, они меняют и свою способность ориентироваться в пространстве или добывать пищу. Например, электрические рыбы, проигрывающие в схватке, часто ненадолго прекращают генерировать разряды в знак подчинения – однако при этом они на тот же период лишаются информации об окружающей среде. Коммуникация меняет восприятие. Слыша птичий щебет, мы, даже упуская часть его звуков, можем не сомневаться: птица что-то сообщает. Слыша, как одна электрическая рыба гудит рядом с другой, мы не можем знать наверняка, сообщает она что-то, выясняет ли местоположение второй или проделывает в каком-то сочетании и то и другое. Важна ли для нее в принципе разница между ориентированием и коммуникацией?