Чтение онлайн

на главную - закладки

Жанры

Ноль: биография опасной идеи
Шрифт:

Причина была отчасти в том, что египтяне интересовались только практической стороной дела. Они так и не пошли дальше измерения объемов и подсчета дней и часов. Математика не использовалась для чего-либо отвлеченного, если не считать астрологии. В результате даже лучшие египетские математики не могли использовать принципы геометрии там, где это не было связано с реальным миром: они не превратили свою математическую систему в абстрактную систему логики. Они также не соотносили математику с философией. Греки отличались от египтян тем, что пользовались абстракциями и философскими категориями; они довели математику до ее верхней точки в древности. Однако не греки открыли ноль. Ноль пришел с Востока, а не с Запада.

Рождение ноля

В истории культуры открытие ноля всегда будет примером одного из самых замечательных достижений человечества.

Тобиас Данциг. «Числа — язык науки» [2]

Греки понимали математику лучше египтян. Овладев

египетским искусством геометрии, они быстро превзошли своих учителей.

Сначала греческая система чисел была очень сходна с египетской. Греки тоже использовали как основу число 10, и в том, как две культуры записывали числа, разница была невелика: вместо рисунков, как египтяне, греки для обозначения чисел использовали буквы. Буква «» («эта») обозначала hekaton — «сто»; «М» («мю») — myriory — «десять тысяч» («мириада» — самый большой разряд в греческой системе). У греков был также символ для числа 5, что указывало на смешение пятеричной и десятеричной систем, в целом же греческая и египетская системы записи чисел были почти одинаковы — на некоторое время. Потом греки переросли этот примитивный способ записи чисел и создали более изощренную систему.

2

Данциг Т. Числа — язык науки / Пер. Ю. Каратассо. М.: Техносфера, 2008

Рис. 1. Изображение чисел в различных культурах:

Вместо того чтобы использовать две черточки для обозначения цифры 2 или три «H» для обозначения 300, как это делалось бы в «египетском» стиле, новая греческая система, появившаяся около 500 года до н. э., использовала отдельные значки для изображения 2, 3, 300 и многих других чисел (рис. 1). Таким образом, греки избавлялись от повторения цифр. Например, запись числа 87 в египетской системе требовала бы пятнадцать символов: восемь пяток и семь вертикальных черточек. В новой греческой системе требовалось всего два символа: для 80 и для 7. (Римская система, сменившая греческую, была шагом назад; запись римскими цифрами — LXXXVII — потребовала бы семи символов с несколькими повторениями.)

Хотя греческая система была изощренней египетской, она не обеспечивала самого прогрессивного способа записи чисел в древнем мире. Эта честь принадлежит другому восточному изобретению: вавилонскому способу счета. Благодаря этой системе на Востоке, в Плодородном полумесяце, появился ноль.

На первый взгляд, вавилонская система представляется извращенной. Во-первых, она шестидесятерична — имеет в основе число 60. Такой выбор кажется странным, особенно если учесть, что большинство человеческих обществ выбирали в этом качестве числа 5, 10 или 20. Во-вторых, вавилоняне использовали только два значка для изображения чисел: клинышек, обозначавший единицу, и двойной клинышек, обозначавший десять. Группы этих значков, объединенных в семейства, содержащие 59 или меньше значков, были базовыми символами системы чисел, так же, как греческая система использовала буквы, а египетская — рисунки. Однако действительно странной особенностью вавилонской системы было то, что вместо использования разных символов для каждого числа, как в египетской и греческой системах, каждый символ мог изображать множество разных чисел. Единственный клинышек, например, мог изображать 1, 60, 3600 и сколько угодно других чисел.

Каким бы странным это ни казалось на современный взгляд, для древних людей это было вполне осмысленно: таков был эквивалент компьютерного кода бронзового века. Вавилоняне, как и представители многих других культур, изобрели приспособления, помогавшие им в счете. Наиболее знаменит из них абак. Известный как «соробан» в Японии, «цзе-суан-пан» в Китае, «счеты» в России, «кулба» в Турции, «хореб» в Армении и под множеством других названий в разных культурах, абак использует перемещающиеся камешки для обозначения количества. (Слова «калькулировать», «калькулюс» и «кальций» происходят от латинского слова calculus — камешек.)

Сложение чисел на абаке столь же просто, как перемещение камешков вверх и вниз. Камешки в разных колонках имеют разную цену и, манипулируя ими, умелый пользователь может быстро складывать большие числа. Когда подсчет закончен, все, что нужно сделать пользователю, — это посмотреть на окончательное расположение камешков и перевести увиденное в число — довольно простая операция.

Вавилонская система походила на абак, символически изображенный на глиняной табличке. Каждая группа символов соответствовала определенному числу камешков, двигавшихся на абаке, и как каждая колонка абака, каждая группа имела собственное, отличное от других значение, в зависимости от положения. В этом смысле вавилонская система не отличалась от той, которой мы пользуемся сегодня. Каждая единица в числе 111 имеет особое значение: справа налево — это 1, 10 и 100 соответственно. Подобным же образом символ

в трех разных положениях в числе
означал «один», «шестьдесят» или «три тысячи шестьсот». Все было, как на абаке, за исключением единственной проблемы. Как вавилонянин записал бы число 60? Цифру 1 написать было легко:
; к несчастью, 60 тоже записывалось как
— с тем единственным отличием, что значок должен стоять на втором месте, а не на первом. На абаке легко определить, какое число представлено. Один камешек в первой колонке легко отличить от одного камешка во второй колонке. Этого нельзя сказать о записи чисел. Вавилоняне не имели способа определить, в какой колонке стоит написанный символ;
мог представлять и 1, и 60, и 3600. С числами, в которые входило несколько значков, дело обстояло еще хуже: это могло быть 61, 3601, 3660 и больше.

Решением этой проблемы был ноль. Около 300 года до н. э. вавилоняне начали использовать два наклонных клинышка

для обозначения пустого места: пустой колонки абака. Символ-заполнитель позволял с легкостью определить, к какому разряду принадлежит значащий символ. До появления ноля значок
мог означать 61 или 3601; благодаря использованию ноля он означал 61; 3601 обозначался как
(рис. 2). Ноль родился из потребности дать каждой последовательности вавилонских цифр единственное постоянное значение.

Хотя ноль был полезен, это был всего лишь символ-заполнитель. Он обозначал только пустое место в колонке абака — той колонке, где все камешки на дне. Он только обеспечивал, что все цифры стоят на правильном месте; собственной числовой ценности он не имел. В конце концов, 000 002,148 означает в точности то же, что 2,148. Ноль в ряду цифр получает значение, зависящее от какой-то другой цифры слева от него. Сам по себе ноль ничего не значит. Ноль был цифрой, а не числом. Он не имел величины.

Рис. 2. Вавилонские цифры

Величина числа определяется его положением на числовой оси по сравнению с другими числами. Например, число 2 идет до числа 3 и после числа 1; ничто другое значения не имеет. Однако ноль сначала не занимал места на числовой оси, это был просто символ, не имевший места в иерархии чисел. Даже сегодня мы иногда воспринимаем ноль как «нечисло», несмотря на то, что все мы знаем, что он обладает собственной числовой значимостью; мы используем цифру 0 как символ-заполнитель, не связывая его с числом ноль. Ноль следует за цифрой 9, а не перед 1, где следовало бы. Не имеет значения, где находится символ-заполнитель, он может располагаться где угодно на числовой оси. Однако сегодня всем известно, что на самом деле ноль не может находиться где угодно, потому что имеет определенное собственное численное значение. Это число, которое отделяет положительные числа от отрицательных. Он является четным целым числом, предшествующим единице. Ноль должен находиться на своем законном месте — перед плюс единицей и после минус единицы. Никакое другое его положение не имеет смысла. Тем не менее ноль располагается в конце ряда на компьютерной клавиатуре и внизу экрана телефона, потому что мы всегда начинаем считать с единицы.

Единица представляется наиболее подходящей для начала счета, но это заставляет нас помещать ноль на неестественное для него место. Для других культур, как, например, майя, живших в Мексике и в Центральной Америке, начало счета с единицы вовсе не казалось рациональным. На самом деле майя имели систему чисел и календарь более логичные, чем наши. Как и у вавилонян, в их системе величина числа зависела от места, на котором стоит обозначающая его цифра. Единственным существенным отличием служило то, что вместо 60 в качестве основы майя использовали 20, с остатками более ранней десятеричной системы. Как и вавилонянам, им требовался ноль, чтобы определять, что какая цифра значит. Для пущего интереса майя пользовались цифрами двух типов: простой основывался на точках и черточках, более сложный — на глифах, гротескных лицах. Нетрудно воочию убедиться, насколько странно сейчас выглядят цифры майя (рис. 3).

Поделиться:
Популярные книги

Адаптация

Кораблев Родион
1. Другая сторона
Фантастика:
фэнтези
6.33
рейтинг книги
Адаптация

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Наваждение генерала драконов

Лунёва Мария
3. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наваждение генерала драконов

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Мы пришли к вам с миром!

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
научная фантастика
альтернативная история
5.00
рейтинг книги
Мы пришли к вам с миром!

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

Заплатить за все

Зайцева Мария
Не смей меня хотеть
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Заплатить за все

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Внешники такие разные

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники такие разные

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого