Ноль: биография опасной идеи
Шрифт:
Расширение Вселенной не замедляется, возможно, оно даже ускоряется. Данные, полученные благодаря сверхновым, говорят о том, что Вселенная становится все больше и больше и расширяется все быстрее и быстрее. Если так, то шанс Большого сжатия невелик, поскольку что-то противодействует силе тяготения. Физики снова заговорили о космологической константе — загадочном нечто, добавленном Эйнштейном к своим уравнениям, чтобы уравновесить влияние гравитации. Величайшая ошибка Эйнштейна, возможно, вовсе не ошибка.
Эта таинственная сила может быть силой вакуума. Крошечные
Астрономы все еще проявляют сдержанность. Данные наблюдений за сверхновыми являются предварительными, но они делаются более основательными. Другие исследования, анализирующие выбросы газа или число гравитационных линз в поле зрения, подтверждают эти данные и предположение, что космос будет расширяться вечно. Вселенную ожидает тепловая смерть.
Ответ на вопрос о будущем Вселенной — лед, а не пламя, благодаря силе ноля.
В бесконечность и за ее пределы
Однако если нам удастся создать полную теорию, со временем она станет понятной каждому, а не только немногим ученым. Тогда все мы — философы, ученые и обычные люди — сможем принять участие в обсуждении того, почему мы и Вселенная существуем. Если мы найдем ответ на этот вопрос, это будет окончательным триумфом человеческого разума, потому что мы узнаем замысел Бога.
За всеми большими загадками физики кроется ноль. Бесконечная плотность черной дыры порождена делением на ноль. Возникновение Вселенной из ничего вследствие Большого взрыва — результат деления на ноль. Бесконечная энергия вакуума — следствие деления на ноль. Однако деление на ноль разрушает ткань математики и логические схемы и грозит уничтожением самого базиса науки.
Во времена Пифагора, до наступления эры ноля, царила чистая логика. Вселенная была упорядоченной и предсказуемой. Она была построена на рациональных числах и предполагала существование Бога. Внушающие тревогу парадоксы Зенона были объяснены благодаря изгнанию бесконечности и ноля из царства чисел.
С началом научной революции чисто логический мир уступил место эмпирическому, основанному на наблюдениях, а не на философии. Ньютон, чтобы объяснить законы Вселенной, должен был игнорировать нелогичность в дифференциальном исчислении — нелогичность, порожденную делением на ноль.
Как только математики и физики сумели преодолеть проблемы, связанные с делением на ноль в дифференциальном и интегральном исчислении, и ввести его в рамки логики, ноль вернулся в уравнениях квантовой механики и общей теории относительности и снова замарал науку бесконечностью. Перед нолями Вселенной логика пасует. Квантовая теория и теория относительности распадаются на части. Для решения проблемы ученые стараются снова изгнать ноль и унифицировать правила, которым подчиняется космос.
Если им это удастся, они поймут законы Вселенной. Мы познаем физические закономерности, управляющие всем до границ пространства-времени, от возникновения космоса до его конца. Люди поймут космический каприз, вызвавший Большой взрыв. Мы поймем замысел Бога. Однако на этот раз победить ноль может оказаться не так легко.
Теории, объединяющие квантовую теорию и общую теорию относительности, описывающие центр черной дыры и сингулярность Большого взрыва, настолько далеки от эксперимента, что может оказаться невозможным выяснить, какая из них правильна, а какая — нет. Доводы сторонников теории струн и космологов могут быть математически безупречными, но в то же время столь же бесполезными, как философия Пифагора. Математические теории могут быть красивыми, последовательными и как будто объясняющими природу Вселенной — и быть совершенно ошибочными.
Все, что известно ученым, — это что космос родился из ничего и вернется в ничто, из которого возник.
Вселенная начинается с ноля и кончается нолем.
Приложение A
Зверь, овощ или министр?
Пусть числа a и b оба будут равны 1. Поскольку они равны между собой,
b2 = ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1).
Поскольку a равно самому себе, очевидно, что
a2 = a2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2).
Вычтем уравнение (1) из уравнения (2). Это дает
a2 — b2 = a2 — ab . . . . . . . . . . . . . . . . . . . . . . . . . . (3).
Мы можем преобразовать обе части уравнения:
a2 — ab = a(a — b); a2 — b2 = (a + b)(a — b).
Тут нет ничего сомнительного. Эти выкладки совершенно верны. Подставьте в них числа и убедитесь сами. Подставив эти значения в уравнение (3), получаем:
(a + b)(a — b) = a(a — b) . . . . . . . . . . . . . . . . . . . . (4).
Пока все хорошо. Теперь разделим обе части равенства на (a — b) и получим
а + b = a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5).
Вычтем из обоих частей a и получим