Новая Физика Веры
Шрифт:
А сегодня доктор биологических наук А. П. Дубров, десятки лет занимающийся исследованием сверхслабого ментального взаимодействия (СМВ), в своей книге «Когнитивная психофизика» пишет:
Приводимые результаты исследований подтверждают, что благодаря СМВ человек способен ментально создавать материю (!) и взаимодействовать с окружающим его миром на фундаментальном уровне – атомных ядер, виртуальных частиц физического вакуума, кварков, нейтринных резонансов, мезонов, электронов.
Принцип неопределенности. Когда ученые поняли, что применительно к микрообъектам нельзя использовать хорошо знакомые
Принцип неопределенности Гейзенберга гласит, что любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные, точные значения. Никакой эксперимент не может привести к одновременно точному измерению динамических переменных, и чем точнее определена одна из величин, например центр инерции, тем менее определенно значение другой величины – импульса. Важным моментом является то, что это ограничение не имеет никакого отношения к несовершенству измерительных приборов. Это принципиальное ограничение, обусловленное самой природой атомной действительности. Если мы собираемся точно определить местонахождение частицы, она просто НЕ ИМЕЕТ определенного импульса, а если мы хотим измерить импульс, она НЕ ИМЕЕТ точного местонахождения.
В классической физике также существуют ограничения в применении некоторых понятий к определенным объектам. Например, понятие температуры не имеет смысла применять для одной молекулы, понятие о точечной локализации (пребывании в одной точке) неприменимо к определению положения волны и т. д. Однако в классической механике определенному значению координаты частицы соответствуют точные значения ее скорости и импульса. В квантовой механике существуют ограничения в возможности одновременного точного определения координаты частицы и величины ее импульса.
Соотношения между неопределенностями местонахождения и импульсами частицы – не единственное проявление принципа неопределенности. Чрезвычайно интересно то, что похожие соотношения существуют между другими величинами, например между временем, в течение которого происходит атомное явление, и количеством энергии, принимающим в нем участие.
Ученые установили, что неопределенность положения события во времени оказывается связанной с неопределенностью количества энергии точно так же, как неопределенность пространственного положения частицы обнаруживает связь с неопределенностью ее импульса (1). Это означает, что мы не можем с одинаковой точностью определить, когда произойдет то или иное событие и какое количество энергии будет при этом задействовано. Явления, происходящие за короткий период времени, характеризуются значительной неопределенностью энергии, а явления, в которых принимает участие четко определенное количество энергии, могут быть локализованы только внутри продолжительных промежутков времени.
Принцип неопределенности существенен в основном для явлений атомных (и меньших) масштабов и не вносит ограничений в опыты с макроскопическими телами. Волновые свойства у таких тел не проявляются, поэтому принцип Гейзенберга к ним неприменим.
Принцип дополнительности. Сформулированный Н. Бором принцип дополнительности гласит, что получение экспериментальной информации об одних физических величинах, описывающих микрообъект (например, атом, элементарную частицу, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым.
Получение информации о свойствах объекта осуществляется в результате измерения – взаимодействия прибора с объектом. Взаимодействия прибора с макрообъектом и микрообъектом существенно различны. В первом случае прибор не оказывает или оказывает ничтожно малое воздействие на объект и процесс измерения может быть описан с той или иной степенью точности. Во втором случае в связи с двойственностью микрообъекта процесс измерения непременно связан с существенным влиянием прибора на протекание исследуемого явления.
Принцип дополнительности объясняют влиянием на состояние микросреды измерительного прибора, который является макроскопическим объектом. При точном измерении одной из дополнительных величин, например координаты, с помощью соответствующего прибора другая величина (импульс) в результате взаимодействия частицы с прибором претерпевает полностью неконтролируемое изменение.
Даже простейший эксперимент по измерению с помощью микроскопа координаты частицы (например, электрона) подтверждает полностью неконтролируемое изменение ее импульса, которое объясняется только взаимодействием частицы с прибором. Дело в том, что для определения положения электрона его необходимо «осветить» светом возможно более высокой частоты. В результате соударения фотона с электроном изменяется его импульс.
Прибор искажает то, что исследует. Оказывается, сам акт наблюдения изменяет наблюдаемое. Объективная реальность зависит от прибора, то есть в конечном счете от произвола наблюдателя. «С позиции современной квантовой теории измерений роль прибора заключается в „приготовлении“ некоторого состояния системы» (4). Было установлено, что если прибор предназначен для измерения волны, то электрон в эксперименте ведет себя как волна. Если используется прибор для изучения свойств частицы, то электрон в таком приборе будет уже частицей. Словом, наблюдатель превращается в конечном счете из зрителя в действующее лицо.
Все, к чему мы «прикасаемся», превращается в материю. Вероятно, самое удивительное свойство этих частиц заключается в том, что кванты проявляются как частицы, только когда мы на них смотрим. Например, когда электрон не наблюдаем, он всегда проявляет себя как волна, что подтверждается экспериментами. Физики смогли прийти к такому выводу благодаря хитроумным опытам, придуманным для обнаружения электрона без его наблюдения.
Представьте, что у вас в руке шар, который становится шаром для боулинга только при том условии, что вы на него смотрите. Если посыпать тальком дорожку и запустить такой «квантованный» шар по направлению к кеглям, то он будет оставлять прямой след только тогда, когда вы на него смотрели. Но когда вы моргали, то есть не смотрели на шар, он переставал чертить прямую линию и оставлял широкий волнистый след наподобие зигзагообразного следа, который оставляет змея на песке пустыни.
Физик Ник Герберт говорит, что иногда ему кажется, что за его спиной мир «всегда загадочен и неясен и представляет собой беспрерывно текущий квантовый суп». Но когда он оборачивается и пытается увидеть этот «суп», его взор «замораживает» содержимое «супа» и видится лишь привычная картина. Герберт считает, что мы немного похожи на легендарного Мидаса, который, согласно греческому мифу, был наделен Дионисом способностью обращать в золото все, к чему прикоснется его рука. «Человеческому постижению недоступна истинная природа „квантовой реальности“, – говорит Герберт, – поскольку все, к чему бы мы ни прикоснулись, превращается в материю» (1). И это действительно так.