Чтение онлайн

на главную

Жанры

Шрифт:

Теорема Белла позволяет сформулировать обобщенно ее суть так: не существует изолированных систем; каждая частица Вселенной находится в «мгновенной» связи со всеми остальными частицами. Вся Система, даже если ее части разделены огромными расстояниями и между ними отсутствуют сигналы, поля, механические силы, энергия и т. д., функционирует как Единая Система (21). При этом мгновенная «связь», описываемая теоремой Белла, не требует затрат энергии.

Казалось бы, подобная связь между частицами, протекающая со скоростью, превышающей скорость света, вступает в противоречие со специальной теорией относительности. Однако правильность теоремы Белла экспериментально подтвердил доктор А. Аспект из Орсе.

Эксперимент

А. Аспекта
. В 1970-е годы уровень технологии уже позволил нескольким исследователям поставить эксперимент с двумя частицами, описанный ранее Бомом. Хотя результаты были обнадеживающие, окончательный вывод так и не был сделан.

В 1982 году физики Ален Аспект, Жан Далибар и Жерар Роже из Института оптики Парижского университета произвели долгожданный эксперимент и получили положительный результат. Сначала они произвели серию одинаковых фотонов путем нагрева атомов кальция лазерами. Затем они позволили каждому фотону бежать в противоположных направлениях через трубку длиной 6,5 м и проходить через специальные фильтры, направляющие их к одному из двух возможных анализаторов. Каждый фильтр производил переключение между одним и другим анализатором за десять миллиардных секунды, то есть на тридцать миллиардных секунды меньше, чем было необходимо свету для прохождения 13 м, отделяющих каждую группу фотонов. Таким путем Аспект и его коллеги смогли исключить любую возможность связи фотонов через известные физические процессы (20).

Они обнаружили, что, как и предсказывала квантовая теория, каждый фотон может коррелировать свой угол поляризации с углом своего двойника. Это указывало либо на нарушение эйнштейновского запрета на связь, превышающую скорость света, либо на нелокальную связь обоих фотонов. Поскольку большинство физиков не могло согласиться с привнесением в физику процессов, скорость которых превышает скорость света, эксперимент Аспекта стал рассматриваться как подтверждение нелокальной связи двух фотонов.

Чтобы рассмотреть упрощенную версию такого эксперимента, которая была разработана в ходе исчерпывающего анализа, данного Дэвидом Бомом, необходимо поближе познакомиться с некоторыми свойствами спина.

В определенном смысле спин частицы представляет собой ее вращение вокруг собственной оси. Однако, как и положено, в субатомной физике ничего не бывает простым и однозначным. В случае с электроном множество значений спина состоит из двух вариантов: количество вращения остается всегда постоянным, однако относительно заданной оси вращения электрон может вращаться в двух направлениях – или по, или против часовой стрелки. Физики обычно обозначают эти два значения при помощи слов «вверх» и «вниз». Естественно, невозможно определить и точное направление оси вращения электрона. Электроны обладают тенденцией существовать в различных точках внутри атома, и точно таким же образом для них характерна тенденция вращаться вокруг любой оси. Тем не менее стоит нам выбрать некую ось и произвести измерения, как мы обнаружим, что электрон вращается именно вокруг этой оси в одном из двух направлений. Другими словами, частица приобретает определенную ось вращения в момент измерения, хотя до этого момента об оси вращения ничего определенного сказать было нельзя: электрон имеет только некоторую тенденцию, или потенцию, вращаться вокруг этой оси (1).

В эксперименте, доказывающем существование нелокальных связей, участвуют два электрона, вращающихся в противоположных направлениях так, что их суммарный спин равен нулю, хотя направления осей вращения неизвестны. Ученые начинают удалять электроны друг от друга методами, которые никак не воздействуют на спин частиц. Суммарный спин остается равным нулю, даже если эти электроны находятся один в Лондоне, а другой – в Нью-Йорке.

Предположим, что после измерения спина частицы вокруг вертикальной оси (исследователь волен выбрать для измерения любую ось) мы обнаружили, что частица, которая находится в Лондоне, имеет «верхний» спин. Поскольку суммарный спин обеих частиц равен нулю, из этого следует, что спин второй частицы в Нью-Йорке должен быть «нижним». Таким образом, посредством измерения спина первой частицы мы одновременно косвенно измеряем спин второй частицы, не оказывая на нее совершенно никакого воздействия.

Парадоксальность эксперимента заключается в том, что спины частиц будут иметь противоположные значения по отношению к любой оси вращения, которую исследователь выберет в момент измерения, хотя до момента измерения они, оси, существуют только в качестве тенденций или возможностей. Стоит наблюдателю выбрать определенную ось вращения первой частицы (например, горизонтальную) и произвести измерения, как вторая частица начинает вращаться вокруг той же оси. Наблюдатель произвел новые измерения, выбрав другую ось вращения первой частицы, а вторая уже в курсе, она уже вращается вокруг новой оси. Словом, обе частицы мгновенно получают определенную общую ось вращения. Причем это происходит настолько быстро, что вторая частица не может получить эту информацию при помощи какого-либо условного сигнала, особенно если она находится на огромном расстоянии.

Как вторая частица узнает, какую ось выбрал исследователь для измерения спина первой частицы?

С точки зрения Эйнштейна, никакой сигнал не способен перемещаться в пространстве быстрее скорости света, поэтому измерение, произведенное по отношению к одному из электронов, не может в то же мгновение сообщить определенное направление вращению второго электрона, находящегося в тысячах миль от первой частицы. А эксперименты неопровержимо свидетельствовали, что факт мгновенной передачи сигнала существует.

По мнению Бора, система из двух электронов представляет собой неделимое целое, и хотя частицы разделены большим расстоянием, мы не можем рассматривать эту систему в терминах составных частей. Независимо от расстояния электроны соединены мгновенными, нелокальными связями. Квантовая действительность оказалась принципиально нелокальной и несепарабельной (не разделимой на отдельные независимые части).

Теорема Белла и эксперименты Аспекта нанесли сокрушительное поражение позиции Эйнштейна, доказав, что понимание действительности как сложной структуры, состоящей из отдельных частей, соединенных при помощи локальных связей, несовместимо с идеями квантовой теории.

Многочисленные и весьма корректные эксперименты, доказывающие существование нелокальности, многократно проводились в конце ХХ века современными учеными (Беннет, Зайлинер) и постоянно подтверждали наличие нелокальной связи между частицами. Известный физик Пол Дэвис из Ньюкаслского университета (Великобритания) заявил, что, «поскольку все частицы постоянно взаимодействуют и разделяются, нелокальные аспекты квантовых систем – общее свойство природы» (22).

Однако нельзя не учитывать и специальную теорию относительности, в которой также отсутствуют ошибки и которая имеет множество подтверждающих ее экспериментов.

Опять сознание. Было предложено два решения этой проблемы, в каждом из которых предполагается, что «связь», описываемая теоремой Белла, не требует энергии, так как именно энергия не может перемещаться быстрее света. Доктор Эдвард Харрис Уокер предположил, что неизвестным элементом, передвигающимся быстрее света и соединяющим систему воедино, является сознание. Другая альтернатива, предложенная доктором Джеком Сарфатти, состоит в том, что средством белловской связи служит информация.

Поделиться:
Популярные книги

Дайте поспать!

Матисов Павел
1. Вечный Сон
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Дайте поспать!

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Последняя Арена

Греков Сергей
1. Последняя Арена
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.20
рейтинг книги
Последняя Арена

Последняя Арена 3

Греков Сергей
3. Последняя Арена
Фантастика:
постапокалипсис
рпг
5.20
рейтинг книги
Последняя Арена 3

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Польская партия

Ланцов Михаил Алексеевич
3. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Польская партия

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Пушкарь. Пенталогия

Корчевский Юрий Григорьевич
Фантастика:
альтернативная история
8.11
рейтинг книги
Пушкарь. Пенталогия

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2