О том, чего мы не можем знать. Путешествие к рубежам знаний
Шрифт:
Компьютерные модели могут производить прекрасные визуальные представления, позволяющие составить понятие о чувствительности различных систем к начальным условиям. Рядом с игральной костью из Лас-Вегаса у меня стоит классическая настольная игрушка, в которую я могу играть часами. Она состоит из металлического маятника, который притягивают три магнита, выкрашенные в белый, черный и серый цвет. Анализ динамики этой игрушки дает картинку, которая отражает конечное положение маятника при движении из всех точек квадратного основания игрушки. Покрасим точку белым, если маятник, запущенный из этой точки, в конце концов оказывается притянут к белому магниту. Точно так же покрасим серым или черным точки, из
Как и в случае популяционной динамики, тут есть совершенно предсказуемые области. Если движение маятника начинается вблизи одного из магнитов, к этому магниту маятник и притягивается. Но по мере приближения к краям картинки мы оказываемся на гораздо менее предсказуемой почве. И действительно, такая картинка дает нам пример фрактала.
На ней есть участки, на которых не существует простого перехода от черного к белому. Если увеличивать изображение, картинка никогда не станет областью, заполненной одним цветом. Сложность рисунка сохраняется на всех масштабах.
Одномерный пример такой картинки можно соорудить следующим образом. Начертим отрезок единичной длины и для начала закрасим одну его половину черным, а другую – белым. Затем возьмем половинный участок между точками 0,25 и 0,75 и перевернем его. Теперь возьмем половину перевернутого участка, расположенную в его середине, и перевернем ее еще раз. Если повторять эту операцию до бесконечности, предсказанное поведение вокруг точки 0,5 становится чрезвычайно чувствительно к малым изменениям. Не существует такого участка, содержащего точку 0,5, который был бы закрашен одним цветом.
Существует более замысловатый вариант этой картинки. Возьмем снова отрезок единичной длины. Сотрем центральную треть отрезка. У нас остались два черных отрезка, разделенные белым промежутком. Сотрем теперь центральную треть каждого из черных отрезков. Получаем черный отрезок длиной 1/9, белый отрезок длиной 1/9, черный отрезок длиной 1/9, затем белый отрезок длиной 1/3, который был стерт на первом шаге, а потом опять: белый – черный – белый.
Вы, наверное, уже догадались, что нужно сделать дальше. На каждом шаге мы стираем центральную треть всех черных отрезков. И так до бесконечности. Полученная картинка называется канторовым множеством по имени немецкого математика Георга Кантора, с которым мы еще встретимся на последнем «рубеже», когда будем рассматривать то, что мы знаем о бесконечности. Предположим, что такое канторово множество определяет конечное положение маятника в моей настольной игрушке. Перемещая маятник вдоль этой линии, я выясняю, что на некоторых участках такая картинка предсказывает чрезвычайно сложное поведение.
Довольно странный расчет показывает, что суммарная длина стертой линии равна 1. Но внутри отрезка по-прежнему остаются черные точки: точка с координатой 1/4 не будет стерта никогда, так же как и точка 3/10. Однако такие черные точки не изолированы. На любом участке, окружающем черную точку, всегда находится бесконечно много черных и белых точек.
Как выглядит динамика игральной кости? Фрактальна ли она и, следовательно, непознаваема? Сначала я предположил, что поведение кости должно быть хаотичным. Однако недавние исследования обнаружили нечто неожиданное.
Знай свою кость
Недавно группа польских исследователей проанализировала бросок игральной кости с математической точки зрения и, используя высокоскоростную киносъемку, выяснила, что наша кость может быть не столь хаотичной и непредсказуемой, как мы опасались. В эту исследовательскую группу, работающую в Лодзи, входят отец с сыном Томаш и Марцин Капитаняки, а также Ярослав Стржалко и Юлиуш Грабский. В своей статье, опубликованной в журнале Chaos в 2012 г. [30] , группа приводит картинки, сходные с полученной для магнитного маятника, но с более сложными начальными положениями, которые учитывают угол, под которым был брошен кубик, а также его скорость. Поведение кости можно считать предсказуемым, если в большинстве точек получившейся картинки кость падает той же стороной при малом изменении начальных условий. Такую картинку, например, можно раскрасить в шесть цветов, соответствующих шести граням кубика. Картинку можно считать фрактальной, если при любом увеличении масштаба по-прежнему можно видеть области, содержащие по меньшей мере два цвета. Если таких признаков фрактальности не видно, то поведение кости предсказуемо.
30
Chaos 22 (4), 2012: 047504.
Модель, которую использовала польская группа, предполагала, что кость идеально уравновешена – так же, как та кость, которую я привез из Лас-Вегаса. Оказалось, что сопротивлением воздуха можно пренебречь, так как оно крайне мало влияет на полет кубика. Когда кость ударяется об стол, некоторая часть ее энергии рассеивается и после достаточного числа соударений кость теряет всю свою кинетическую энергию и останавливается.
Трение кубика об стол также играет важную роль, поскольку в первых нескольких соударениях кость с высокой вероятностью скользит по столу, а при последующих отскоках скольжение прекращается. Однако в модели, которую изучала польская группа, поверхность стола считалась лишенной трения, так как наличие трения делает динамику слишком сложной для расчетов. Таким образом, можно представить себе игральную кость, которую бросают на лед.
Я уже выписал уравнения движения кости во время ее полета в воздухе, основанные на законах движения Ньютона. В представлении польской группы они оказались не слишком сложными. А вот уравнения изменения динамики после соударения со столом выглядят довольно пугающе: они занимают в ее статье целых десять строк.
Исследователи выяснили, что, если количество энергии, рассеиваемой при соударении со столом, достаточно велико, распределение исходов бросков кости не обладает фрактальными свойствами. Это означает, что при достаточно высокой точности установления начальных условий результаты броска игральной кости предсказуемы и воспроизводимы. Можно предсказать, например, что зачастую кость будет останавливаться на той грани, которая была нижней в момент броска. То есть поведение игральной кости, геометрически правильной в статическом состоянии, может оказаться отличным от чисто случайного, если учесть ее динамику.
Однако при увеличении жесткости стола, которое приводит к уменьшению рассеяния энергии и, следовательно, к росту числа отскоков кубика, можно увидеть появление фрактальных свойств.
На этих картинках рассматриваются изменения двух параметров: высоты, с которой бросают кость, и вариаций угловой скорости вращения вокруг одной из осей. Чем меньше энергии рассеивается при соударении со столом, тем более хаотичным получается поведение кости и тем больше кажется, что судьбу моей игральной кости все-таки определяет воля богов.