Чтение онлайн

на главную - закладки

Жанры

О том, чего мы не можем знать. Путешествие к рубежам знаний
Шрифт:

Исходя из почти одинаковых начальных условий, прогноз А предсказывает, что через четыре дня на всех Британских островах будут сильные ветры и дожди, а прогноз В – приход с Атлантики зоны высокого давления

Великий шотландский физик Джеймс Клерк Максвелл сформулировал в своей книге «Материя и движение», опубликованной в 1873 г., важное отличие системы детерминистической, но непознаваемой: «Существует принцип, на который часто ссылаются: “Одинаковые причины всегда производят одинаковые следствия”» [27] . Это безусловно справедливо в отношении математического уравнения, описывающего динамическую систему. Но Максвелл продолжает: «Существует другой принцип, который не следует

смешивать с приведенным [выше]: “Подобные причины производят подобные следствия”. Это справедливо лишь в том случае, если небольшие изменения начальных условий производят лишь небольшие изменения в конечном состоянии системы». Ложность именно этого принципа выявило в XX в. открытие теории хаоса.

27

Здесь и далее цитаты из работы Максвелла даны в переводе под ред. Н. Н. Андреева.

Такая чувствительность к малым изменениям начальных условий может сорвать мои попытки использовать выписанные мной уравнения для предсказания будущего игральной кости. Уравнения у меня есть, но могу ли я быть уверен в точности определения угла, под которым кубик вылетает из моей руки, скорости его вращения, расстояния до стола?

Конечно, не все так уж безнадежно. Бывают случаи, в которых малые изменения не приводят к разительным отклонениям результатов уравнений, как в примере траекторий на классическом бильярдном столе. Важно осознавать, когда познание невозможно. Прекрасный пример осознания момента, начиная с которого невозможно узнать, что произойдет дальше, был открыт математиком Робертом Мэем, когда он анализировал уравнения роста популяций.

Осознание невозможности познания

Мэй, родившийся в 1938 г. в Австралии, сначала учился физике и работал в области сверхпроводимости. Но в конце 1960-х гг. в его научной работе произошел резкий поворот, когда он познакомился с вновь образованным движением социальной ответственности в науке. Его интересы переместились с поведения групп электронов на более актуальные вопросы закономерностей динамики популяций животных. В то время биология еще не была естественной средой для человека с математическим складом ума, но работы Мэя впоследствии изменили это положение. Его великое открытие стало возможным благодаря сочетанию строгого математического образования, которое он получил как физик, и нового интереса к проблемам биологии.

В опубликованной в 1976 г. в журнале Nature статье под названием «Простые математические модели с чрезвычайно сложной динамикой» [28] Мэй рассмотрел динамику математического уравнения, описывающего циклический рост популяции. Он показал, что даже вполне невинно выглядящее уравнение может давать численные результаты с необычайно сложным поведением. Его формула популяционной динамики была не каким-нибудь сложным дифференциальным уравнением, а простым дискретным уравнением с обратной связью, которое мог обсчитать кто угодно при помощи карманного калькулятора.

28

Nature 261 (5560), 1976: 459–467.

Уравнение динамики популяции с обратной связью

Рассмотрим популяцию животных, численность которой может варьироваться от нуля до некоторого гипотетического максимального значения, обозначенного N. Существует некоторая доля Y этого максимума (лежащая между 0 и 1), определяющая в уравнении, какая часть популяции выживет к следующему циклу с учетом воспроизводства и борьбы за пищевые ресурсы. Предположим, что коэффициент воспроизводства в каждом цикле равен r. Тогда, если доля максимальной численности популяции, выжившая к концу цикла, была равна Y, то численность следующего поколения составит r · Y · N.

Но выживут не все вновь появившиеся животные. Согласно этому уравнению, доля не выживших животных также будет равна Y. То есть из r · Y · N животных, существовавших в начале цикла, умрет Y(r · Y · N). Значит, всего к концу цикла останется в живых (r · Y · N) – (r · Y 2 · N) = [r · Y(1 – Y)] · N животных, а доля

максимальной численности популяции, существующая в текущем цикле, равна r · Y(1 – Y).

По сути дела, эта модель предполагает, что произведение численности выжившей к концу каждого цикла части популяции на постоянный коэффициент r, называемый коэффициентом воспроизводства, дает число животных, существующих в начале следующего цикла. Но необходимых для выживания ресурсов на всех не хватает. Поэтому уравнение вычисляет, какая часть этих животных доживет до конца цикла. Полученное число выживших животных снова умножают на коэффициент r, что дает численность следующего поколения. Интересная особенность этого уравнения состоит в том, что его поведение сильно зависит от выбора значения r, коэффициента воспроизводства. Некоторые значения r дают в высшей степени непредсказуемое поведение. Мы можем точно знать, как будут изменяться значения. Но существует некий предел, за которым они полностью выходят из-под контроля. Знание внезапно оказывается недостижимым, так как добавление всего одного лишнего животного может привести к резкому изменению динамики численности популяции.

Например, Мэй выяснил, что при значениях r от 1 до 3 численность популяции в конце концов стабилизируется. В этом случае, каковы бы ни были начальные условия, численность будет постепенно стремиться к некоторому постоянному значению, зависящему от величины r. Это похоже на игру на бильярде, в центре которого устроена воронка. Куда бы я ни запустил шар, рано или поздно он окажется на дне воронки.

При r, больших 3, также обнаруживается участок предсказуемого поведения, но несколько другого типа. При значениях r от 3 до

(что приблизительно равно 3,44949) численность популяции, по сути дела, скачет взад и вперед между двумя значениями, зависящими от r. Когда r становится больше
, характер динамики популяции снова изменяется. При значениях r от
до 3,54409 (точнее, до корня алгебраического уравнения 12-й степени) существуют уже четыре значения, которых периодически достигает численность популяции. При дальнейшем увеличении r таких значений становится 8, потом 16 и т. д. По мере роста r число разных значений каждый раз удваивается, пока мы не дойдем до порога, за которым динамика превращается из периодической в хаотическую.

Мэй признает, что, когда он начал исследовать это уравнение, он не имел никакого представления о том, что происходит за этой точкой. Перед его кабинетом в Сиднее была доска, на которой он повесил объявление, обещавшее 10 австралийских долларов любому, кто сможет объяснить такое поведение системы. На доске он написал: «По-моему, полная неразбериха».

Он нашел ответ на свой вопрос во время поездки в Мэриленд – и тогда-то и был впервые использован термин «хаос» [29] . Мэй выступал там на семинаре и рассказал об участке удвоения периода, признав, что дошел до такого места, после которого он вообще ничего не понимает. В зале был один математик, который понимал все. Джеймс Йорк никогда раньше не видел такого удваивающегося поведения, но зато он точно знал, что происходит на следующем участке. Он называл это хаосом.

29

Разумеется, тут имеется в виду математический термин. Само греческое слово было известно, в том числе и в английском языке, за много веков до этого.

При r, больших 3,56995 (точнее, предельной точки решений системы уравнений возрастающей степени), поведение становится чрезвычайно чувствительным к начальному состоянию популяции. Малейшее изменение исходной численности животных может привести к получению совершенно другого результата.

Однако, как выяснил Йорк, по мере дальнейшего увеличения r все еще могут встречаться участки регулярного поведения. Например, при r = 3,627 численность популяции снова становится периодической и колеблется между шестью разными значениями. С увеличением r 6 заменяется на 12, потом на 24 и так далее, каждый раз удваиваясь вплоть до нового наступления хаоса.

Поделиться:
Популярные книги

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Школа Семи Камней

Жгулёв Пётр Николаевич
10. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Школа Семи Камней

Кодекс Охотника. Книга XXVI

Винокуров Юрий
26. Кодекс Охотника
Фантастика:
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXVI

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Машенька и опер Медведев

Рам Янка
1. Накосячившие опера
Любовные романы:
современные любовные романы
6.40
рейтинг книги
Машенька и опер Медведев

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Возвращение

Жгулёв Пётр Николаевич
5. Real-Rpg
Фантастика:
боевая фантастика
рпг
альтернативная история
6.80
рейтинг книги
Возвращение

Идущий в тени 8

Амврелий Марк
8. Идущий в тени
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Идущий в тени 8

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Заставь меня остановиться 2

Юнина Наталья
2. Заставь меня остановиться
Любовные романы:
современные любовные романы
6.29
рейтинг книги
Заставь меня остановиться 2