Чтение онлайн

на главную

Жанры

О том, чего мы не можем знать. Путешествие к рубежам знаний
Шрифт:

Тем не менее он постарался добиться исполнения одного из своих пророчеств. По-видимому, он предсказал дату собственной смерти – 21 сентября 1576 г. Чтобы не оставлять исполнение этого предсказания на волю случая, он взял дело в собственные руки. Когда наступил предсказанный день, он совершил самоубийство. Мне, как бы я ни стремился к знаниям, это кажется некоторым перебором. Собственно говоря, большинство людей предпочло бы не знать дату собственной смерти. Но Кардано нужна была только победа, даже в игре в кости со смертью.

Перед самоубийством он написал книгу, которую многие считают первым шагом к пониманию поведения игральной кости, катящейся по столу. Хотя он написал свою «Книгу об играх случая» (Liber de Ludo Aleae)

еще в 1564 г., этот труд долго оставался неизвестным и не был опубликован до 1663 г.

На самом деле не кто иной, как великий итальянский физик Галилео Галилей, использовал тот же анализ, который описал Кардано, чтобы выяснить, следует ли ставить на 9 или на 10, когда бросают три кости. Он рассудил, что существует 6 · 6 · 6 = 216 возможных исходов падения костей. Из них в 25 случаях выпадает 9, а в 27 случаях – 10. Разница невелика, и обнаружить ее эмпирическим путем было бы непросто, но и ее достаточно для того, чтобы в долгой игре было выгоднее ставить на 10.

Прерванная игра

Математическое освоение игры в кости переместилось из Италии во Францию в середине XVII в., когда два крупных игрока, Блез Паскаль и Пьер де Ферма, обратили свои мысли на предсказание будущего этих кувыркающихся кубиков. Проблема понимания исхода броска костей заинтересовала Паскаля после встречи с одним из величайших игроков того времени, кавалером де Мере. Де Мере предложил Паскалю разрешить несколько интересных ситуаций. Одна из них сводилась к задаче, решенной Галилеем. Однако в число других входил вопрос о том, разумно ли ставить на выпадение по меньшей мере одной шестерки в четырех бросках кости, а также ставшая впоследствии знаменитой «задача о ставках».

Паскаль завязал оживленную переписку с великим математиком и юристом Пьером де Ферма, вместе с которым они попытались решить задачи, поставленные де Мере. В случае броска четырех костей можно рассмотреть 6 · 6 · 6 · 6 = 1296 разных исходов и подсчитать, в скольких из них выпадает шестерка, но задача становится при этом довольно громоздкой.

Вместо этого Паскаль рассудил, что в одном броске шестерка не выпадет с вероятностью 5/6. Поскольку все броски независимы, вероятность того, что шестерка не выпадет ни в одном из четырех бросков, равна 5/6 · 5/6 · 5/6 · 5/6 = 625/1296 = 48,2 %. Что означает, что вероятность увидеть шестерку равна 51,8 %. Это чуть больше половины, значит, вполне есть смысл ставить на такой исход.

«Задача о ставках» была еще интереснее. Предположим, что два игрока – назовем их Паскаль и Ферма – бросают игральную кость. Ферма выигрывает партию, если на кости выпадает 4 или более очков; в противном случае эту партию выигрывает Паскаль. Таким образом, при каждом броске кости у каждого из них есть половинный шанс на выигрыш партии. Они поставили на кон 64 фунта, которые достанутся тому, кто первым выиграет три партии. Однако игру прерывают, и продолжить ее невозможно. К этому моменту Ферма выиграл две партии, а Паскаль – одну. Как следует разделить между ними 64 фунта?

Традиционные попытки решения этой задачи были сосредоточены на том, что произошло в прошлом. Может быть, раз Ферма выиграл в 2 раза больше партий, чем Паскаль, то и его выигрыш должен быть в 2 раза больше? Но, если, например, перед тем как игра была остановлена, Ферма выиграл всего одну партию, такое решение становится бессмысленным. Паскаль в таком случае не получает ничего, хотя по-прежнему имеет шанс на победу. Никколо Фонтана Тарталья, современник Кардано, после долгих размышлений пришел к выводу, что решения не существует: «Это вопрос скорее юридический, чем математический, и любой вариант разделения выигрыша может стать поводом для тяжбы».

Однако другие не были готовы признать свое поражение. Они обратили внимание не на прошлое, а на то, что могло бы случиться в будущем. В противоположность

первой задаче здесь они попытались не предсказать, как ляжет кость, а представить все возможные варианты будущего и разделить выигрыш в соответствии с разными исходами, благоприятными для того или другого игрока.

Здесь легко впасть в заблуждение. Кажется, что существует три сценария. Если следующую партию выигрывает Ферма, он забирает себе все 64 фунта. Если следующую партию выигрывает Паскаль, то играется еще одна, финальная партия, которую может выиграть либо Паскаль, либо Ферма. Поскольку в двух из этих трех случаев выигрывает Ферма, то, видимо, ему причитаются две трети ставки. В эту-то ловушку и попал де Мере. Паскаль утверждает, что это решение ложно: «Кавалер де Мере – человек очень остроумный, но он вовсе не математик; это, как вы знаете, огромный недостаток» [15] . Вот уж действительно!

15

Цит. по: Филиппов М. М. Блез Паскаль. Его жизнь, научная и философская деятельность. М., 2016.

Паскаль же, напротив, был великий математик, и он считал, что выигрыш следует разделить иначе. Ферма может выиграть в следующей партии (и получить 64 фунта) с вероятностью 50 %. Но, если в следующей партии выиграет Паскаль, шансы обоих на победу в финальной партии равны, так что выигрыш можно разделить поровну – по 32 фунта каждому. Ферма в любом случае гарантированно получает 32 фунта. Поэтому оставшиеся 32 фунта следует разделить поровну, что в итоге дает Ферма 48 фунтов.

Ферма согласился с анализом Паскаля. «Я ясно вижу, что истина, будь она в Тулузе или в Париже, одна и та же», – писал ему в Тулузу Паскаль.

Пари паскаля

Анализ ставок в игре, разработанный Паскалем и Ферма, можно применить и к гораздо более сложным ситуациям. Паскаль выяснил, что тайна распределения выигрыша сокрыта внутри того, что теперь называют треугольником Паскаля.

Треугольник устроен таким образом, что каждое число в нем равно сумме двух чисел, расположенных непосредственно над ним. Полученные числа определяют, как следует разделить выигрыш в любой прерванной игре. Например, если Ферма до победы не хватает двух выигранных партий, а Паскалю – четырех, нужно взять строку треугольника номер 2 + 4 = 6 и найти сумму первых четырех чисел и сумму последних двух. Эти суммы дают пропорцию, в которой следует разделить выигрыш. В данном случае получается пропорция 1 + 5 + 10 + 10 = 26 к 1 + 5 = 6. Таким образом, Ферма получает 26/32 · 64 = 52 фунта, а Паскаль – 6/32 · 64 = 12 фунтов. В общем случае решение для игры, в которой Ферма не хватает n, а Паскалю – m выигранных партий, можно найти в (n + m) – й строке треугольника Паскаля.

Есть данные, что французы опоздали с открытием связи между этим треугольником и исходом азартных игр на несколько тысячелетий. Игральные кости и другие методы получения случайных результатов, например «И цзин», издавна использовали в Китае в попытках предсказать будущее. В тексте книги «И цзин», созданном около 3000 лет назад, для случайного выбора гексаграммы, значение которой затем можно истолковать, используется в точности та же таблица, которую Паскаль составил для анализа исходов подбрасывания монет. Однако создателем треугольника считают в наше время Паскаля, а не китайцев.

Поделиться:
Популярные книги

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Путь (2 книга - 6 книга)

Игнатов Михаил Павлович
Путь
Фантастика:
фэнтези
6.40
рейтинг книги
Путь (2 книга - 6 книга)

Я – Орк. Том 5

Лисицин Евгений
5. Я — Орк
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 5

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Совершенный: пробуждение

Vector
1. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: пробуждение

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4