О времени, пространстве и других вещах. От египетских календарей до квантовой физики
Шрифт:
Предположим, что вместо введения специальных значков только для больших чисел было решено использовать специальные знаки для всех групп, начиная с единиц. Если придерживаться системы, изложенной мною в начале настоящей главы, где ' обозначает единицы, — это десятки, + сотни, а = тысячи, тогда можно обойтись одним набором из девяти символов. Мы сможем изображать каждую цифру под соответствующим значком, обозначающим тип группы: = + — '. Тогда число 2581 будет изображаться следующим образом (с использованием только букв от А до I и упомянутых выше значков):
= + — '
ВЕНА.
А 5555 будет записано так:
= + — '
Е
Причем одинаковые символы Е перепутать невозможно, так как один из них обозначает 5, другой — 50, третий — 500, а четвертый 5000. Используя дополнительные обозначения для 10 000, 100 000, миллионов и т. д., можно записать любую цифру, как бы велика она ни была.
Правда, не думаю, чтобы такая система могла завоевать популярность. Даже если бы какой-нибудь грек придумал нечто подобное, ему наверняка бы не понравилась необходимость аккуратно выписывать эти маленькие значки. Во времена ручного переписывания документов лишние знаки означали дополнительный труд, и писцы наверняка воспротивились бы такой безрадостной перспективе.
Кто-то может решить, что дополнительные обозначения вообще не нужны. В конце концов, соответствующие группы можно записывать справа налево в порядке возрастания величины. Единицы расположатся в крайнем правом ряду, левее будут находиться десятки, дальше сотни и т. д. В гаком случае ВЕНА = 2581, а ЕЕЕЕ = 5555 и без дополнительных значков сверху.
Совершенно верно. Тут возможна другая сложность. А если в каком-то числе не будет группы десятков или единиц? Как быть, к примеру, с числом 10 или 101? Первое состоит из одной группы десятков без единиц, а второе — из групп сотен и единиц, но без десятков. Если использовать принятые обозначения, числа можно записать следующим образом: A' и А +A', только теперь без маленьких значков над буквами обойтись нельзя. Если попробовать, сразу станет ясно, что невозможно отличить А, обозначающую 1, от А, обозначающей 10, или АА = 101 от АА = 11 или АА =110.
Можно попробовать оставить пробел, обозначив 101 как А А. Но в эпоху ручного переписывания пробел наверняка очень быстро потерялся бы, превратив число в АА. Не менее вероятен и обратный процесс — трансформации АА в А А. И как обозначить пробел в конце числа? Я уверен, если греки и думали о чем-то подобном, то пришли к выводу, что пробелы между символами в числах сделают упрощение практически неприменимым. Они решили бы, что проще обозначить J =10, а SА = 101; что же касается маленьких значков, ну их к Гадесу!
Никто из греков, даже сам великий Архимед, не подумал, что не обязательно вводить в символ пробелы. Их легко можно заполнить каким-нибудь ничего не значащим символом. Например, поставим вместо пробела значок $. Тогда число 101 можно записать в виде А +$ – 'A. Если мы так и поступим, пробелов не будет, да и в значках над буквой больше нет необходимости. Теперь 1 — это А, 10 — А$, 100 — А$$ и т. д. Любое число, как бы велико оно ни было, может быть записано с помощью девяти букв и одного символа, ничего не обозначающего.
Казалось бы, что может быть проще? После того, как это придумано!
И тем не менее человечеству потребовалось больше пяти тысячелетий, считая от появления первых обозначений чисел,
Индусы назвали новый символ sunya,что означает «пустой». Этот символ вскоре был принят арабами, назвавшими его sifr.Это слово тоже обозначает «пустой», но уже на арабском языке. Позже оно было преобразовано в современные термины cipher(ноль), а потом через zefirumв zero.
Новая система, названная арабской (поскольку европейцы узнали ее от арабов), очень медленно добралась до стран Запада и вытеснила римскую.
Арабские числительные возникли в тех краях, где никогда не использовали латинский алфавит, поэтому форма цифр ничем не напоминала буквы римского алфавита. С их появлением была устранена путаница между словами и цифрами, а получившая широкое распространение yematriaпостепенно утратила свое значение и перестала занимать умы широких масс.
Арабские цифры, которыми все мы сегодня пользуемся, — это 1, 2, 3, 4, 5, 6, 7, 8, 9 и конечно же 0. Мы привыкли к этим цифрам и, пожалуй, даже не осознаем, насколько полно. К примеру, если в настоящей главе вам что-то показалось странным или сомнительным, то, возможно, оттого, что я в ней намеренно не приводил ни одного арабского числительного.
Мы все знаем, насколько появление арабских цифр упростило арифметические вычисления. Они избавили людей от множества ненужных забот, в основном благодаря присутствию зеро, которое является воистину бесценным. Необыкновенная важность зеро нашла свое отражение и в английском языке. Ведение арифметических подсчетов носит слегка устаревшее название ciphering (cipher— ноль), а процесс расшифровки какого-либо кода — deciphering.
Теперь, если вы вернетесь к названию этой главы, то поймете, что его следует понимать буквально. Ничего считается! И появление специального символа для обозначения ничего является величайшим открытием человечества.
Глава 13 БУКВОЙ С ОБОЗНАЧАЕТСЯ СКОРОСТЬ СВЕТА В ПУСТОТЕ
Вряд ли можно назвать физическую формулу более известную, чем e = mc 2, полученную Эйнштейном. Ее знают все: высокоинтеллектуальные читатели научной фантастики, физики-атомщики, студенты, газетные репортеры, домашние хозяйки, водители автобусов и даже некоторые конгрессмены.
Конечно, знать — это еще не значит понимать. Точно так же умение быстро пробормотать «Отче наш» не является свидетельством глубины религиозных чувств.
Давайте внимательно рассмотрим эту формулу. Каждая буква является начальной буквой в слове, обозначающем соответствующую величину: с — первая буква слова energy(энергия), m — слова mass(масса), а с — слова celeritas(скорость по-латыни). Последняя величина — это скорость света в вакууме.