Очерк общей истории химии. От древнейших времен до начала XIX в.
Шрифт:
Другим видом «искусственного воздуха», исследованного Кавендишем, был «фиксируемый воздух» Блэка. Кавендиш получал его, так же как и Блэк, действием кислот на известняк, белую магнезию, мрамор и т. п. Он нашел, что плотность фиксируемого воздуха» по отношению к обычному воздуху равна 1,57. Кавендиш исследовал также «искусственный воздух», образующийся в результате брожения, а также гниения органических веществ.
Спустя 17 лет после своего первого сообщения о различных видах «искусственного воздуха», Кавендиш в 1783 г. опубликовал мемуар под заглавием «Известие о новом эвдиометре». В этом исследовании описывается прибор для анализа воздуха [28] , основанный на окислении окиси азота. За время между выходом первой и второй работ Кавендиша (с 1766 по 1783) в области пневматической химии были сделаны крупнейшие
28
«Эвдиометр» (в буквальном переводе с греческого языка «измеритель добротности») — прибор для анализа воздуха, главным образом для установления содержания в нем кислорода, например по реакции соединения-кислорода с водородом, по реакции окисления окиси азота и т. д. (от греческого — «добротный», «ясный», «благорастворенный»).
29
Даниэль Рутерфорд изучал медицину в Эдинбургском университете под руководством Дж. Блэка и в 1772 г. выполнил работу, содержащую сведения о вновь открытом газе (мефитическом, или флогистированном воздухе) — азоте. Затем он работал практикующим врачом, а с 1786 г. был профессором ботаники в Эдинбурге. Кроме того, он был членом и президентом ряда медицинских и биологических научных обществ.
Кавендишу, однако, принадлежит подробное количественное исследование свойств азота, а так же открытого в это же время Шееле и Пристлеем «огненного воздуха», т. е. кислорода. Для получения чистого азота Кавендшн также воспользовался свойствами «селитряного газа» (окиси азота), который, соединяясь с «дефлогистированной» частью воздуха (кислородом), образует красную двуокись азота, легко поглощаемую водой и растворами щелочей при встряхивании.
При помощи специально сконструированного эвдиометра Кавендиш провел большое число анализов воздуха. Он опроверг господствовавшее в то время представление, что «добротность» воздуха в различных местах различна. В течение 60 дней он брал пробы воздуха при разных условиях погоды и в различных местах и, проведя около 400 определений, установил, что состав воздуха всюду одинаков. Кавендиш нашел, что среднее содержание «дефлогистированного воздуха» в обычном воздухе составляет 20,84 % по объему.
В 1784–1785 гг. Кавендиш выполнил и опубликовал еще одно исследование под заглавием «Эксперименты с воздухом». Эта работа имела целью найти причину уменьшения объема воздуха при всякого рода его «флогистировании» и установить, что происходит с исчезающим при этом воздухом. После нескольких неудачных попыток решить этот вопрос Кавендиш, желая удалить из воздуха его «дефлогистированную часть» (кислород), смешал воздух с водородом и при помощи электрической искры взорвал смесь. К его удивлению, в результате взрыва получилась вода. Он повторил опыт в сосуде большего объема (8 фунтов длины и диаметром 3/4 дюйма) и получил в результате 8,7 г воды, «которая не имела ни вкуса, ни запаха и при испарении досуха не оставляла ни малейшего следа». При этом оказалось, что более 4/5 взятого воздуха оставались в трубке. В результате опытов Кавендиш пришел к выводу, что при «флогистировании» воздуха (т. е. при отнятии у него кислорода) из него выделяется влага.
В этом же сообщении Кавендиша описаны опыты взрыва смеси воздуха и водорода при недостаточном количестве водорода. Оказалось, что при этом отчасти образуются окислы азота, которые при растворении в воде дают азотную и азотистую кислоты. Кавендиш пытался установить источник появления кислоты, но безуспешно.
Используя простой прибор, Кавендиш исследовал действие электрического разряда на воздух. Изогнутая под острым углом стеклянная трубка, заполненная воздухом, была погружена концами в два сосуда с ртутью. Над ртутью в обоих коленах трубки было налито немного раствора едкого кали.
В восьмидесятых годах Кавендиш, конечно, хорошо знал о новых представлениях, развитых Лавуазье, о роли кислорода в химических и жизненных процессах и даже иногда пытался с новых точек зрения толковать результаты своих пневматических опытов. Однако как убежденный флогистик в заключение своего мемуара «Опыты с воздухом» он писал: «Из сказанного как будто следует, что явления природы могут найти объяснение и без помощи флогистона; действительно, дело сводится к одному и тому же, говорят ли, что телу сообщается дефлогистированный воздух или что из него удаляется флогистон с заменой его водой. Так как нет, вероятно, вещества, совершенно свободного от воды, и так как я не знаю средства, как переносить флогистон с одного тела на другое, без того, чтобы оставалось сомнение, не была ли перенесена и вода, то чрезвычайно трудно при помощи опыта решить, какое из двух мнений самое истинное. Но так как общепринятый принцип флогистона так же хорошо объясняет явления, как и теория Лавуазье, то я придерживался первого» (86).
Кавендиш и в дальнейшем проводил опыты с воздухом, желая установить, весь ли азот, содержащийся в воздухе, может быть превращен в азотную кислоту. В результате этих опытов он пришел к выводу: «Если в нашей атмосфере содержится часть флогистированного воздуха, которая отличается от всего остального и не может быть превращена в азотную кислоту, то мы с уверенностью можем сказать, что она не больше 1/125 части его» (87).
Этот вывод оказался достаточно точным и спустя 100 лет был подтвержден при открытии аргона в воздухе. Таким образом, Кавендиш был выдающимся химиком-пневматиком, обогатившим химию и физику рядом крупнейших открытий (88).
Современником Кавендиша был другой выдающийся английский естествоиспытатель и философ — Джозеф Пристлей (1733–1804) (89). Он был сыном ткача, рано потерял мать и воспитывался у тетки. Еще в детстве обнаружились его выдающиеся способности, особенно к иностранным языкам. Религиозная склонность привела его в духовную академию в Девентри, где он, в течение 1752–1755 гг. изучал теологию. Впрочем, наряду с лекциями по теологии и философии, он с большим интересом слушал курсы по естественным наукам. Затем он увлекся филологией и изучил немецкий, французский, итальянский, латинский, греческий, арабский, сирийский, халдейский и древнееврейский языки.
По окончании академии в течение нескольких лет Пристлей был священником в диссидентских общинах и занимался преподаванием, в частности, иностранных языков. Будучи преподавателем в академии в Уоррингтоне (между Ливерпулем и Манчестером) и имея досуг, он начал заниматься научной работой. Он писал трактаты по теологии и философии и написал также популярную работу по истории электричества, за которую в 1766 г. был избран членом Королевского общества в Лондоне. В это же время он начал исследования в области пневматической химии.
В 1773 г. Пристлей был приглашен на должность литературного секретаря к богатому аристократу лорду Шельборну. В качестве секретаря Шельборна он совершил путешествие в Париж, где познакомился с Лавуазье и другими видными учеными Франции.
В этот период Пристлей интенсивно работал, выступая с философскими сочинениями (о материи и духе, о свободе воли и т. д.), высказывая материалистические идеи и в резкой форме выступая против догматов господствующей англиканской церкви. В связи с этим ему пришлось уйти от лорда Шельборна, так как его взгляды оказались несовместимыми со взглядами хозяина.
Переехав в Лондон, Пристлей возобновил свои занятия по пневматической химии. Он часто встречался с В. Франклином (1706–1790), который хорошо к нему относился и шутливо называл его за выступления против англиканской церкви «честным еретиком».
В 1780 г. Пристлей переселился в Бирмингам, был здесь священником в одной из общин и одновременно занимался научной работой. Он активно работал также в «Лунном обществе» любителей науки и продолжал свои химические исследования. Кроме того, он много писал на различные политические темы.