От чёрных облаков к чёрным дырам
Шрифт:
531. Ряд этих результатов предвосхитил Хойл в своём замечательном научно-фантастическом романе «Чёрное облако», опубликованном в 1950 г. ГИГАНТСКИЕ МОЛЕКУЛЯРНЫЕ ОБЛАКА
Туманность Ориона и тёмное окружение, показанные на рис. 27, образуют так называемое Гигантское молекулярное облако (ГМО). Гигантское — потому что оно имеет очень большие размеры, молекулярное — потому что, как выяснилось, оно содержит молекулы, т.е. комбинации атомов в форме химических соединений. Каждая молекула, как и атом (см. гл. 2), имеет свои энергетические уровни. Интересующие астрономов энергетические уровни возникают в результате внутренних вращений молекулы. И так же, как в случае атомов, молекула изменяет состояние вращения,
Характерные частоты излучения молекул существенно меньше, чем у атомов, и имеют величины порядка 1011 Гц. Как видно из табл. 2; эти частоты лежат в микроволновой области. Настроив антенну на характерную частоту данной молекулы, астроном может детектировать наличие и плотность молекул данного сорта в облаке. На рис. 28 показан микроволновый приёмник диаметром 11 м, используемый для подобных наблюдений. Он работает с волнами длиной больше 1 мм.
Рис. 28. Работающий на миллиметровых волнах телескоп в обсерватории Китт Пик. (штат Аризона), предназначенный для детектирования молекулярных линий в межзвёздных облаках
Приводимая ниже табл. 5 даёт некоторое представление о богатстве полученных таким путём данных. Межзвёздное пространство было бы само по себе совершенно неинтересным, если бы не возможность узнать состав ГМО. Заметим, что там присутствуют не только неорганические, но и органические молекулы. Тот факт, что многие из последних являются частями основной биологической молекулы ДНК, позволяет поставить интригующий вопрос, не могут ли существовать в пространстве жизнеспособные системы, раз уж там имеются их основные строительные блоки. Таблица 5. Молекулы в пространстве541 Число атомов
в молекулеНеорганические молекулыОрганические молекулы 2 Н2(водород) СН (метилидин) ОН (гидроксил) CN (циан) SiO (оксид кремния) СО (оксид углерода) NS (сернистый азот) GS (сернистый углерод) 3 H2O (вода) HCN (цианид) H2S (сероводород) НСО (формил) SO2 (диоксид серы) HNO (нитроксил) 4 NH3 (аммиак) Н2СО (формальдегид) HNCO (изоциановая кислота) 5 — H2CHN (метанимин) НСООН (муравьиная кислота) 6 — СН3ОН (метанол) HCONH2 (формамид) 7 — CH3HN (метиламин) 8 — НСООСН3 (метил) 9 — (СН3)2О (диметиловый эфир)
541. Список далеко не полон и даёт лишь общее представление.
Конечно, молекулы разных типов распределены по-разному. Например, в ГМО наибольшее по масштабам распределение даёт молекула СО (оксид углерода). Изображение ГМО, включающее туманность Ориона (рис. 27.) и построенное по наличию СО, простирается далеко за пределы оптического изображения. Молекулы СО обнаружены в других частях Галактики, а также в других галактиках.
Рис. 29. В ГМО имеются неоднородности, контуры которых показаны на рисунке, Самые внутренние области (они зачернены) имеют наибольшую плотность. Именно здесь образуются протозвёзды
ГМО
Что такое звезда? Прежде всего, это шар, состоящий из горячего плотного газа. Следовательно, чтобы образовать звезду, нужно сжать некоторую область молекулярного облака очень сильно, пока она не станет достаточно плотной и горячей для того, чтобы превратиться в звезду. Такое сжатие достигается силой тяготения. В процессе -рассказа о судьбе звёзд мы неоднократно будем убеждаться, что тяготение играет решающую роль в жизни звезды.
Рассматривая пока что ГМО, можно сказать, что любая начальная неоднородность в нём имеет тенденцию увеличиваться в результате тяготения, так как более плотные области сильнее притягивают окружающее вещество и поэтому имеют тенденцию собирать все больше вещества и становиться ещё более плотными. Именно так развиваются неоднородности, показанные на рис. 29.
Роль тяготения в сжатии областей внутри ГМО можно сравнить с открытием какого-нибудь дорогостоящего полезного ископаемого, например нефти, в слаборазвитой стране. Это. открытие влечёт за собой приток людей из окрестных мест и возрастание экономической активности в регионе. Как следствие, возникает неравенство между этим регионом и окружающими областями, которое непрерывно нарастает. Однако такой процесс не может длиться бесконечно долго, так как начинают себя проявлять восстанавливающие равновесие социально-экономические силы и в конечном итоге регион экономически стабилизируется. Точно так же в сжимающемся облаке возникают противоположные силы, так что в результате достигается стабильное состояние. Это происходит следующим образом.
Когда газ сжимается, он нагревается и, когда становится достаточно горячим, начинает излучать теплоту и свет. Это излучение, а также увеличение хаотического движения молекул и атомов газа (рис. 30) порождают давление, препятствующее вызываемому тяготением сжатию молекулярного облака. Температура и давление в центре облака максимальны, а на периферии — минимальны.
Рис. 30. Стрелки указывают направления движения частиц газа. Значение скорости частиц и её направление совершенно хаотичны. Интенсивность этого хаотичного движения связана с общей температурой газа
Один из основных законов теплоты заключается в том, что теплота переносится всегда из области большой температуры в область более низкой температуры, если, конечно, имеются доступные пути оттока теплоты. В протозвезде, т.е. в описанном выше молекулярном облаке, возможны два пути переноса теплоты от горячей центральной зоны к более холодным периферическим областям. Один путь, называемый конвекцией, заключается в том, что горячие частицы газа из центра сами перемещаются в более холодные области. Это во многом напоминает то, как поднимается вверх со дна более тёплая вода в нагреваемом сосуде. В другом способе переноса теплоты носителями являются фотоны, частицы света (см. гл. 2). Фотоны также совершают путь наружу, унося теплоту, и этот процесс, естественно, называется излучением.