Открытие без границ. Бесконечность в математике
Шрифт:
Однако Кантор заслуживает отдельной главы, ведь он не только заполнил числовую прямую, устранив эти промежутки, но и первый встретился с бесконечностью лицом к лицу.
Глава 5. Рай Кантора
Возможно, было бы небольшим преувеличением заявить, что открытия Кантора стали поворотным моментом в истории всей математики, хотя есть и те, кто придерживается именно этой точки зрения. Однако, без сомнений, его достижения ознаменовали поворотный момент в изучении бесконечности.
Ряды Фурье
Жан-Батист Жозеф Фурье (1768–1830) был математиком-провидцем, он вошёл в число пионеров нового раздела математики — математического анализа, и создал одну из
Среди его работ особенно выделяется «Аналитическая теория тепла» (возможно, важнейшая из опубликованных им работ), в которой основное внимание уделялось теплопроводности. Этот труд не только имеет исключительную научную ценность, но и стал первым в истории трудом по математической физике.
Разложение функции в ряд заключается в представлении произвольной функции в виде бесконечной суммы других функций. Преимущество этого приёма в том, что с функциями, составляющими бесконечную сумму, работать проще, чем с исходной функцией. Ряды Фурье не были первым примером разложения функции в ряд — в то время уже достаточно часто использовалось разложение в степенной ряд Тейлора. Основное требование при разложении в ряд Тейлора звучало так: поведение рассматриваемой функции должно быть полностью определено на небольшом интервале.
Разложение в ряд Тейлора возможно для множества функций, но имеет один недостаток: оно может применяться исключительно локально, то есть позволяет узнать поведение функции в небольшой окрестности, но никак не определить её поведение в целом. Для решения этой задачи Фурье рассмотрел разложение функции на простые составляющие, как правило, синусоидальные функции. Волны, на которые раскладывались функции при преобразованиях Фурье, получили название гармонических колебаний, а изучавший их новый раздел математики был назван гармоническим анализом.
Возможность представления функции в виде суммы тригонометрических функций синуса и косинуса обладает огромным преимуществом с точки зрения математики, так как для синуса и косинуса легко построить график, вычислить производную и интеграл. Фурье доказал, что любую периодическую функцию f(х) при соблюдении некоторых ограничений можно представить в виде бесконечной суммы функций синуса и косинуса. Тем не менее разложение в ряд Фурье ставит два важных вопроса, на которые непросто дать ответ, так как они затрагивают самые основы математического анализа и касаются теорем о существовании и единственности. Звучат эти вопросы так: во-первых, при каких условиях существует ряд, который действительно сходится к данной функции, и, во-вторых, если такой ряд действительно существует, является ли он единственно возможным?
В 1870 году Кантор сформулировал теорему, содержащую критерий сходимости ряда Фурье, в следующем году — вторую теорему, которая дополняла первую и касалась единственности ряда Фурье для данной функции. При этом Кантор столкнулся с проблемой: эта теорема не имела общего характера, и существовали точки, в которых она не выполнялась, причём таких точек было бесконечно много, и их множества перемежались с множествами точек, в которых теорема была верна. Так Кантор столкнулся с иррациональными числами. Встал вопрос, выходивший далеко за рамки разложения функции в ряд и за рамки понятия бесконечности. Кантор начал серьёзно рассматривать взаимоотношения между непрерывным и дискретным на множестве вещественных чисел. С одной стороны, имелась прямая, на которой из чисто геометрических соображений точки распределялись непрерывно, с другой стороны, с арифметической точки зрения распределение этих точек было дискретным. Проблема заключалась в самом определении вещественного числа, точнее в определении иррационального числа (см. приложение «Множества чисел»).
Жан-Батист Жозеф Фурье.
Фундаментальные последовательности
Кантор разрабатывал свою теорию вещественных чисел в два этапа. В 1872 году в работе «О расширении теоремы, относящейся к теории тригонометрических рядов»
Мы также говорили, что элементы этих последовательностей могут располагаться сколь угодно близко друг к другу. Кантор назвал такие последовательности фундаментальными (в настоящее время они также называются последовательностями Коши).
Кантор чувствовал, что фундаментальные последовательности должны сходиться к иррациональному числу, и взял это за основу определения иррационального числа. Если продолжать аналогию, которую мы использовали в предыдущих главах, Кантор заметил скопления машин на автомагистрали и предположил, что причиной этому являются пункты оплаты — иными словами, существуют точки, в которых скапливаются определённые числовые последовательности и отсутствуют рациональные числа (это те самые промежутки на числовой прямой, о которых мы говорили выше). В таких точках должны находиться иррациональные числа, например 2, 3, 5 или даже . Проблема заключалась в том, что иррациональным числам нужно было дать строгое определение на языке математики.
Существуют определённые свойства, которыми должны обладать множества чисел, чтобы образовывать согласованную систему, или, иными словами, чтобы их действительно можно было использовать и определить на них элементарные операции. Первое из этих свойств состоит в том, что эти множества должны быть замкнутыми относительно операций сложения, вычитания, умножения и деления. Иными словами, при сложении двух целых чисел мы ожидаем, что результат также будет целым числом. Второе свойство — упорядоченность: для двух любых данных чисел можно однозначно указать, что они равны или что одно из них больше другого. Третье свойство — плотность, оно более сложное, и им обладают не все множества чисел. Свойство плотности означает, что между двумя произвольными числами всегда находится третье, но этот принцип, как вы уже видели, не выполняется ни для натуральных, ни для целых чисел. Например, между 5 и 6 нет никакого другого целого числа. Как известно, плотность характерна для рациональных чисел, но Кантор знал, что новое множество иррациональных чисел, которое он хотел определить с помощью фундаментальных последовательностей, тоже должно обладать этим свойством. Он понимал, что числа, которым он пытался дать определение, были расширением рациональных чисел, и, что вполне логично, предполагал, что свойства рациональных чисел естественным образом будут распространяться и на иррациональные. Однако доказать свою догадку ему не удалось. Кроме того, возникла ещё одна проблема — различные фундаментальные последовательности могли сходиться к одному и тому же иррациональному числу. Эти и другие препятствия были преодолены с введением понятий отношения эквивалентности и фактор-множества, с помощью которых множества чисел определяются сейчас.
Заострим внимание на том, что Кантор свободно использовал понятие актуальной бесконечности в определении столь конкретного явления, как число, которое, по сути, является не чем иным, как пределом бесконечной числовой последовательности. В своих первых работах он также не использовал понятие предела. Более того, он говорил не о числах, а о числовых величинах. Кантор осознавал, что ступает на зыбкую почву, поскольку при рассмотрении понятий бесконечности и непрерывности следует вооружиться логическими и математическими инструментами, а их у него не было, и Кантору ничего не оставалось, кроме как создать эти инструменты самому.