Открытие без границ. Бесконечность в математике
Шрифт:
Если мы рассмотрим множества, между которыми можно установить биективное отображение, то увидим, что число элементов в этих множествах одинаково.
Но если одно множество состоит из четырёх элементов, а другое — из трёх, между ними нельзя установить биективное отображение: какой-либо элемент остаётся без пары или какому-либо элементу будет сопоставлено сразу несколько элементов.
Кантор определил эквивалентность множеств следующим образом: «Кардинальность двух множеств одинакова, если между ними можно установить биективное (взаимно однозначное) отображение». О множествах с одинаковой кардинальностью говорят, что они являются равномощными, то есть имеют одинаковое
Таким образом, если дано произвольное множество, например коробка цветных карандашей, которое мы обозначим А, и можно установить взаимно однозначное соответствие между множеством A и множеством N = {1, 2, 3, 4, 5, 6}, то говорят, что кардинальность А и N одинакова:
|A| - |N| = 6.
Может показаться, что мы усложняем очевидное, но это впечатление обманчиво: новый логический аппарат позволил дать чёткое определение бесконечному множеству.
Для этого сначала определим, что такое конечное множество. Непустое множество А (иными словами, содержащее как минимум один элемент) является конечным, если для некоторого числа n множество А имеет ту же кардинальность, что и множество {1, 2, 3, …, n}. Следовательно, n будет числом элементов множества A. В противном случае говорят, что множество А бесконечное.
Аналогично: множество А бесконечно, если существует собственное подмножество В множества А, имеющее ту же кардинальность, что и само А. В противном случае множество А является конечным.
На последнем определении стоит остановиться подробнее ввиду его чрезвычайной важности. Во-первых, следует пояснить, что понимается под собственным подмножеством. Это очень просто: если дано произвольное множество А, например {a, b, с, d}, его собственным подмножеством будет любое подмножество, которое можно составить из элементов А, при этом нельзя использовать их все. Примерами собственных подмножеств А будут:
{а} {а, b} {а, b, с} {а, с, d} {d} {b, с, d}.
В соответствии с вышесказанным кажется логичным, что между множеством и его собственным подмножеством нельзя установить взаимно однозначное соответствие: собственное подмножество всегда будет содержать меньше элементов, чем само множество.
Но существуют примеры, когда это не так. Рассмотрим
n -> 2n
В соответствии с этим
1 -> 2
2 -> 4
3 -> 6
…
Иными словами, каждому натуральному числу соответствует чётное число и, напротив, каждому чётному числу соответствует натуральное число. Это означает, что кардинальность этих множеств одинакова, и
В этом случае парадокс, сформулированный Галилеем (см. главу 3), — это уже не парадокс, а констатация факта: множество натуральных чисел является бесконечным.
Путём аналогичных рассуждений можно доказать, что множество натуральных чисел
Счётные множества
Кантор также сформулировал очень важное понятие счётного множества. По определению, множество А называется счётным, если можно установить взаимно однозначное соответствие между А и подмножеством
Когда мы заявляем, что места в зале кинотеатра пронумерованы, мы говорим о взаимно однозначном соответствии между подмножеством натуральных чисел и множеством кресел и сопоставляем каждому креслу число.
Мы уже показали, что множество целых чисел является счётным. Далее Кантор получил поистине удивительный результат: множество рациональных чисел
Схема, придуманная Кантором, такова. Нужно построить таблицу рациональных чисел (напомним, что речь идёт о дробях) следующим образом: в первой строке записываются дроби, числитель которых равен 1, во второй — дроби, числитель которых равен 2, в третьей — 3 и т. д. Вычеркнем из каждой строки повторяющиеся дроби. Например, 2/2 — это то же самое, что 1/1 или 3/3, 2/4 — то же, что и 1/2, и т. д. Построив таблицу, обойдём все числа в порядке, указанном стрелками, начиная с 1/1. Мы обойдём все рациональные числа ровно один раз. Таким образом, взаимно однозначное соответствие между натуральными и рациональными числами устанавливается следующим образом: