Парадоксы роста. Законы глобального развития человечества
Шрифт:
В случае роста по гиперболе это происходит в далеком прошлом, когда население асимптотически приближается к нулю, либо в то критическое мгновение T1, при котором N обращается в бесконечность в момент обострения. В этой сингулярности, при которой функция (1) стремится к бесконечности, состоит главная привлекательность этой формулы, поскольку именно тогда и происходит коренное изменение в развитии системы, связанное с демографическим переходом от стремительного роста к стабильному населению мира.
В процессе этих исследований исключительную роль сыграл Сергей Павлович Курдюмов. Доклад о росте
В режиме с обострением рост происходит быстрее, чем рост по экспоненте, – в этом случае само время экспоненциального роста делается все меньше по мере приближения к критической дате, тогда как при экспоненциальном росте это характерное время постоянно.
Именно Курдюмовым и его коллегами для проблематики режимов с обострением были развиты мощные математические методы, которые открыли возможность для обоснования представлений синергетики, развитые немецким физиком Хакеном для описания процессов развития сложных систем [18]. Эти методы нашли приложение в теории взрывных процессов, ударных волн, в физике фазовых превращений, а также при описании неравновесных процессов развития систем в химической кинетике и теории лазера. Теперь эти представления о нелинейных проблемах в физике сложных систем нашли применение к человечеству в целом, став основанием для новых количественных результатов и поучительных качественных аналогий.
Прежде чем мы обратимся к выводам, следующим из закона гиперболического роста, выясним смысл постоянной величины С, которая, как легко видеть, определяет население Земли за год до особенности. Таким образом, эта постоянная зависит от выбранной единицы времени, и год, основанный на времени обращения Земли вокруг Солнца, никак не выражает природу человека. Однако если в эту модель ввести собственную единицу времени, определяемую эффективной продолжительностью жизни человека, то это открывает путь к определению пределов применимости простого закона роста (1).
Это время = 45 лет – близко к среднему возрасту человека, и в рамках модели оно возникает как полуширина глобального демографического перехода (см. рис. 5). Тогда при построении модели время следует выражать в масштабе = 45 лет и вместо размерной постоянной C целесообразно ввести константу K:
Это большой параметр – безразмерное число определяет все соотношения, возникающие при построении теории роста. В дальнейшем во всех выводах теории это число становится главной характеристикой, параметром порядка в той динамической системе, развитие которой мы рассматриваем.
Так, числом K ~ 100 000 определяется как начальная популяция Homo 1,6 млн лет назад, так и предел, к которому стремится население Земли, ~ K2 10 млрд, а продолжительность развития человечества оказывается порядка Т0 К ~ 3 млн лет. Величиной порядка K определяется масштаб такой
Основное свойство гиперболического, взрывного развития состоит в том, что скорость роста пропорциональна не первой степени численности населения, как при экспоненциальном росте, отражающем способность человека к размножению, а второй степени – квадрату численности населения мира. Это указывает на существенную закономерность, которую следует интерпретировать как кооперативный рост, описываемый квадратичным взаимодействием, пропорциональным ~ N2.
Изменение показателя степени от единицы для экспоненциального роста к двум для гиперболического роста приводит к новому характеру роста и развития человечества. Это не уточнение ранее принятой модели, а появление качественно новой закономерности в описании роста популяции – в нашем случае всего человечества. Однако эту закономерность нельзя отождествлять с парным взаимодействием мужчины и женщины, потому что мы имеем дело со всеми связями, охватывающими все процессы взаимодействия в системе народонаселения мира.
Таким образом, настоящее исследование посвящено изучению всех последствий этого взаимодействия, которое аналогично взаимодействию Ван дер Ваальса в неидеальном газе. Оно хорошо изучено в молекулярной физике, а также в физике систем, состоящих из многих частиц. Так, процессы, зависящие от квадрата числа частиц, возникают при описании химических реакций второго порядка в химической кинетике. Эти процессы могут быть описаны как разветвленные цепные реакции, асимптотически приводящие к квадратичной зависимости скорости реакции от времени, на что автору указал Г.Б. Манелис. В качестве примера таких процессов с обострением приведем атомную бомбу, в которой в результате разветвленной цепной реакции происходит ядерный взрыв.
Квадратичный рост населения нашей планеты указывает на аналогичный, гораздо более медленный, но не менее драматичный процесс, когда обобщенная информация в результате цепной реакции умножается на каждом этапе роста, определяя тем самым нарастающие темпы развития населения во всем мире. В таких системах с сильной связью частиц в результате самоорганизации возникают коллективные степени свободы, и рост населения мира описывается уравнением:
где время dt = dT/ измерено в единицах = 45 лет.
В этом нелинейном дифференциальном уравнении роста развитие выражено через квадрат полного числа людей на Земле в данный момент времени, отнесенного к квадрату константы K. Это уравнение роста лежит в основе всех развитых представлений о коллективном взаимодействии и следующих из этого выводов. Согласно развитому пониманию рост человечества происходит в результате кооперативного механизма умножения нашей численности. Причины этого могут быть разными, однако мы увидим, как коллективный механизм делает их эффективным средством при описании роста в масштабе всего человечества.