Параллельные миры
Шрифт:
Наконец я сказал, что М-теория не является теорией вообще, поскольку ее основные уравнения неизвестны. В отличие от струнной теории (которую можно было выразить на основе простых струнных уравнений поля, записанных мною несколько лет тому назад и содержащих в себе всю теорию), у мембран вообще не было теории поля. Он согласился и с этой точкой зрения. Но все же он был уверен, что уравнения для М-теории в конце концов будут выведены.
У меня закружилась голова. Если Таунсенд был прав, то струнной теории вновь предстояло претерпеть радикальную трансформацию. Мембраны, когда-то отправленные в мусорную корзину истории физики, возрождались.
Источником этой революции является то, что струнная теория продолжает развиваться вспять. Даже сегодня никому не известны простые физические принципы, лежащие
Одной из оригинальных черт М-теории является то, что она вводит не только струны, но и целый зверинец мембран различных измерений. В таком представлении точечные частицы называются «нуль-бранами», потому что они бесконечно малы и не имеют измерения. Тогда струна «однобранна», поскольку это одномерный объект, определяемый своей длиной. Мембрана «двубранна», подобно поверхности баскетбольного мяча, которая определяется длиной и шириной. (Баскетбольный мяч может двигаться в трех измерениях, но его поверхность лишь двумерна). Наша Вселенная может быть «трехбранной», трехмерным объектом, обладающим длиной, шириной и высотой.
Существует несколько способов, при помощи которых мы можем взять мембрану и свести ее к струне. Вместо того чтобы сворачивать одиннадцатое измерение, мы также можем вырезать ломтик-экватор из одиннадцатимерной мембраны, создав таким образом замкнутую ленту. Если мы уберем толщину этой ленты, то она превратится в десятимерную струну. Петр Хорава и Эдвард Виттен показали, что таким образом мы приходим к гетеротической модели струн.
В сущности, можно показать, что существует пять способов свести одиннадцатимерную М-теорию к десяти измерениям, получив в результате те самые пять теорий суперструн. М-теория дает нам быстрый интуитивный ответ на загадку, почему существует пять струнных теорий. Представьте, что вы стоите на вершине высокого холма и смотрите на равнины. С удачной точки обзора в третьем измерении отдельные части равнины предстают нам объединенными в единую связную картину. Подобным образом, с точки обзора в одиннадцатом измерении, глядя «вниз» на десятимерную равнину, мы видим безумное лоскутное одеяло, сшитое из пяти теорий суперструн — отдельных лоскутков одиннадцатого измерения.
Хотя Пол Таунсенд и не смог ответить на большую часть заданных мной вопросов, окончательно в правильности этой идеи меня убедила сила еще одной симметрии. М-теория не только обладает самым большим набором симметрии, известным физике, у нее есть и еще один козырь в рукаве: дуальность, которая дает М-теории сверхъестественную способность вместить пять теорий суперструн в одну теорию.
Рассмотрим электричество и магнетизм, которые подчиняются уравнениям Максвелла. Было давно замечено, что если мы поменяем местами электрическое поле и магнитное, то уравнения останутся почти неизменными. Эта симметрия станет полной, если мы добавим монополи (единичные магнитные полюса) в уравнения Максвелла. Пересмотренные уравнения Максвелла останутся совершенно неизменными, если мы поменяем электрическое поле с магнитным и заменим электрический заряд е на обратный магнитный заряду. Это означает, что электричество (если электрический заряд мал) в точности эквивалентно магнетизму (если магнитный заряд велик). Эта эквивалентность называется дуальностью.
В прошлом эту дуальность считали не более чем научной диковинкой, предметом салонных разговоров, поскольку вплоть до сегодняшнего дня никто не видел монополя. Однако физики посчитали примечательным тот факт, что в уравнениях Максвелла содержалась скрытая симметрия, которой природа, по всей видимости, не пользуется (во всяком случае, в нашем секторе Вселенной).
Подобным образом и пять струнных теорий дуальны по отношению друг к другу. Рассмотрим
Сложно найти теории, которые были бы в большей степени не похожи друг на друга. Однако, как и в электромагнетизме, эти две теории обладают мощной дуальностью: если увеличить силу взаимодействий, то струны типа I будто по волшебству превращаются в гетеротические струны типа SO(32). (Этот результат настолько неожиданный, что, когда я впервые увидел его, я в изумлении покачал головой. В физике редко находятся две теории, которые кажутся совершенно разными во всех отношениях, в то время как доказывается, что они математически эквивалентны.)
Возможно, основным преимуществом М-теории над струнной теорией является то, что вместо того, чтобы быть довольно маленькими, эти дополнительные измерения на самом деле довольно велики и их даже можно наблюдать в лаборатории. Согласно струнной теории, шесть из десяти измерений должны быть свернуты в крошечный шарик, многообразие Калаби-Яу, которое слишком мало для того, чтобы его можно было наблюдать при помощи доступных нам сегодня инструментов. Эти шесть измерений были компактифицированы, благодаря чему попасть в дополнительные измерения не представляется возможным, что, конечно, разочарует тех, кто надеялся однажды взмыть в бесконечное гиперпространство, а не просто срезать маршрут через компактифицированное гипер пространство посредством порталов-червоточин.
Однако отличительным свойством М-теории является то, что в ней фигурируют мембраны. Всю нашу Вселенную можно рассматривать в виде мембраны, парящей в намного большей вселенной. В результате этого не все дополнительные измерения необходимо сворачивать в шарик. По сути, некоторые из них могут быть огромны, бесконечны в своей протяженности.
Физиком, попытавшимся разработать это новое представление о Вселенной, стала Лиза Рэндалл из-Гарварда. Несколько похожая на актрису Джоди Фостер, Рэндалл кажется не на своем месте в исключительно мужской профессии физика-теоретика, где царит жестокая конкуренция, а движущей силой является тестостерон. Она разрабатывает идею о том, что если наша Вселенная действительно представляет собой три-брану, парящую в пространстве, содержащем дополнительные измерения, то, возможно, это объясняет тот факт, что гравитация намного слабее трех остальных взаимодействий.
Рэндалл выросла в нью-йоркском Куинсе; в школе она не выказывала особого интереса к физике, зато обожала математику. Я считаю, что, хотя все мы рождаемся учеными, не каждый способен продолжить роман с наукой в более взрослом возрасте. Одной из причин тому является каменная стена математики, встающая перед нами.
Нравится нам это или нет, если мы хотим сделать научную карьеру, то в конце концов приходится выучить «язык природы» — математику. Без математики мы можем только пассивно наблюдать за танцем природы, не принимая в нем активного участия. Как когда-то выразился Эйнштейн: «Чистая математика является своеобразной поэзией логических идей». Разрешите и мне предложить аналогию. Можно любить французскую цивилизацию и литературу, но для того, чтобы понять французское мышление, необходимо выучить французский язык и спряжения французских глаголов. Таким же образом дело обстоит в науке с математикой. Когда-то Галилей написал: «[Вселенную] нельзя прочесть до тех пор, пока мы не выучим языка и не ознакомимся с символами, в которых она написана. Она написана на языке математики, а буквы этого языка — треугольники, круги идругие геометрические фигуры, без посредства которых понять одно-единственное слово не в человеческих силах».