Чтение онлайн

на главную

Жанры

Шрифт:

С этим-то и была проблема. После того, как у нас иссякли запасы РС, первые три сотни ракет собственной разработки мы делали на артиллерийских порохах, благо этого добра в конце сорок первого-начале сорок второго у нас скопилось изрядно — нагревали и перепрессовывали в шашки нужных размеров. Но, как и всегда, просчет ситуации на некоторое время вперед давал безрадостную картину — если ничего не делать, пороха скоро закончатся. Нужен был свой нитроглицерин, причем в приличных количествах — хотя бы десять килограмм в день. Советские ракетчики предлагали нам использовать их разработку — порох ПС, составленный из пироксилина и калиевой селитры, но он и по калорийности был процентов на пятнадцать хуже баллиститного, и селитры у нас тогда не было, так что поблагодарили за наводку, но отказались, благо что мы не планировали заваливать немцев навесным огнем по площадям, поэтому потребности в порохе у нас были гораздо — на несколько порядков — скромнее.

Первые опыты по производству нитроглицерина мы начали еще в конце сорок первого — в лабораторных количествах, только чтобы "принюхаться" к этому опасному веществу. Делали в стеклянной посуде, буквально по нескольку грамм, практически не дыша. Но переход к объемам в десятки грамм оказался сложноватым — начались взрывы. Хорошо хоть я настоял, чтобы все работы выполнялись дистанционно, механическими манипуляторами, чтобы оператор находился за перегородкой. К весне сорок второго мы получили

из СССР технологию производства нитроглицерина, и уже на ее основе стали совершенствовать свое производство. Как мы поняли, ключевыми факторами успешного производства были тщательная очистка исходных и результирующих веществ и строгое отслеживание температурных режимов. Так как мы не гнались за большими объемами, то стали развивать свою технологию именно в этом направлении. Тщательную очистку мы начали осваивать и раньше, а добавление интенсивного охлаждения сделало маленькое чудо — если до этого взрывы случались раз в два дня, то после введения охладителей — уже раз в пять дней. Но и это нас не устраивало. Правда, те небольшие объемы в сотню грамм, что мы производили за один раз, не давали большого разрушительного эффекта — ну, будет разрушен чан, так взрывная волна будет разбита и ослаблена бетонными ребрами камеры, в которой выполнялось смешивание, а кислоты будут погашены пролившейся известковой водой — над вопросами безопасности мы тщательно подумали еще до того, как стали заниматься этим опасным делом, а не после первых катастроф. Как результат, не было ни одной жертвы, а оборудование — освинцованные чаны и манипуляторы — сделать или восстановить было достаточно просто. Как бы то ни было, среднесуточная выработка в марте сорок второго у нас достигла семидесяти килограмм, что в переводе на готовый порох означало более двухсот килограмм пороховых шашек, или двадцать ракет в сутки. И каждый день мы наращивали производство на пять килограмм за счет создания очередного поста по производству нитроглицерина — мы по-прежнему опасались наращивать емкости, чтобы не получить скопления больших масс, которые могли бы вызвать существенные разрушения. Стремно это.

То есть было понятно, что для повышения безопасности требовалось уменьшать массу конечного продукта, накапливающуюся в одном месте. Но принятая в СССР периодическая технология такого не позволяла — смешивание в емкости кислот и глицерина, отстаивание, при котором скапливались сравнительно большие массы нитроглицерина, несколько промывок. Тут один юный химик и предложил — "А зачем нам смешивать в емкостях? Давайте смешивать сразу в трубках — пока смесь будет течь по трубкам, будет идти нитрация, да и охлаждать такие небольшие массы проще. А отстаивание заменим сепарированием — тоже большие массы скапливаться не будут, их сразу будем выводить в воду". Наши гуру сначала отнеслись к предложению с недоверием — ну как же? всегда проводили нитрацию в емкостях, а тут… Но здравое зерно в этих предложениях было, поэтому к маю сорок второго была собрана опытная установка по непрерывному производству нитроглицерина. Первые опыты показали, что схема рабочая, но предстояло много покорпеть над деталями — углы наклона спиралей в сепараторах, способ смешивания жидкостей при промывках — воздухом или механически, способ дальнейшего хранения… Но в начале лета немцы сделали нам подарок — в плен попал специалист, который работал на химическом заводе в Германии — что-то у него было нечисто с биографией, поэтому его отстранили от производства и, видимо, чтобы не обижался, отправили в армию. Немец-то нам и рассказал, "как делают в цивилизованных странах" — и про нитратор Шмидта, и про нитратор Майснера, и устройство сепараторов, в том числе сепаратора Биацци, и режимы работы… Заодно обругал нашу схему нитрования — "в передовых производствах" нитрация выполнялась хоть и в постоянном потоке, но все-таки она шла в емкостях, там непрерывно перемешивалась, а эмульсию, состоящую из смеси кислот и получившегося нитроглицерина, также постоянно отводили и пропускали через сепараторы и станции промывки.

Мы так подумали, что пожалуй наша технология смешивания в трубках ничем не хуже — работало ведь. Разве что к тому моменту смешивание шло уже в штуцере. Так что схему нитрования оставили свою. А вот за сепаратор Биацци немцу было отдельное спасибо и послабление режима. В этом сепараторе отсутствовали механические движущиеся детали, соответственно, нечему было ударять по скоплениям нитроглицерина, отчего безопасность сепарации резко повышалась — смесь из нитроглицерина и кислот подавалась вдоль стенки круглой емкости, от этого смесь закручивалась, то есть получала круговое движение, а это — ничто иное, как основа сепарации жидкостей с разной плотностью — менее плотный нитроглицерин скапливался сверху посередине, более плотные кислоты — снизу и ближе к краям — и оставалось только вовремя выводить эти фракции. Струйка нитроглицериа тут же попадала в большой объем воды, откуда шла на промывку, чтобы избавиться от остатков кислот и динитроглицерина, а кислоты также шли на промывку и избавление от остатков нитроглицерина — эти процессы были нами более-менее отработаны и вопросов уже не возникало. Ну и последним штрихом стало транспортирование очищенного нитроглицерина в смеси с большими объемами воды к месту изготовления пороха.

Таким образом мы получали технологию, в которой нитроглицерин не скапливался в концентрированном виде в объемах более пяти граммов, а в остальном почти постоянно находился в виде эмульсий — с кислотами или водой. Это значительно, почти до нуля снижало вероятность взрывов. Ну, небольшие взрывы-то в сепараторах случались, но они останавливали производство не несколько часов максимум. Правда, чтобы отладить эту технологию, нам потребовалось еще три месяца, но аккурат к началу осени сорок второго заработала первая промышленная установка непрерывного производства нитроглицерина, пока на двести килограмм в сутки. Но мы запустили производство еще девяти штук, так что уже через месяц рассчитывали перевести все производство нитроглицерина на непрерывную технологию, тем более что металлурги начали выдавать небольшие партии нержавейки, а сварщики научились делать надежные соединения. Пока таких сварщиков было только два человека, но — лиха беда начало.

Но с двумя тоннами в сутки, что будут выдавать нам эти десять установок, мы будем получать уже шесть тонн баллиститного пороха, то есть четыре кубометра. А это — заряды на пятьсот-шестьсот ракет или на две с половиной тысячи снарядов для пушек калибра восемьдесят пять или восемьдесят восемь миллиметров. В сутки. Столько ракет нам, понятное дело, не требовалось, а вот со снарядами — чем дальше, тем больше у нас увеличивался настрел, и не только таких калибров. Но все-равно, в годовом исчислении у нас будет выходить две тысячи тонн пороха — по сравнению с СССР или Германией наши объемы были в десятки раз меньше. Но пока хватало и этого — свиней бы нам побольше, а то с одной хрюшки получалось где-то десять килограммов глицерина, то есть на одну тонну пороха требовалось тридцать свиней. Остальное, конечно, съедим, да и мыться надо, но все-равно — шестьдесят тысяч свиней в год — вынь да положь. А мы еще и планировали увеличить производство. Раза в два. Или в десять — пока не решили.

С прессовкой-то тоже не все было гладко. Наши-то применяли шнековые прессы, которые позволяли выдавать пороховые колбаски практически любой длины, причем в массовом количестве. Нам же, даже несмотря на переданные чертежи и технологические карты, удалось сделать и отладить эти процессы уже к весне сорок третьего — до этого шашки выходили по такой технологии с пузырями воздуха внутри, сколами, трещинами — было и недостаточное смешивание исходных материалов, и неправильно подобранный угол шнеков прессов — мы поменяли рецептуру под доступные нам компоненты, поэтому механические характеристики порохов изменились — там и слоистость другая, и внутренняя сцепляемость, да и релаксация пороховой массы шашек после прессования происходила на другую величину. И к тому времени актуальность пороховых шашек была под вопросом — мы переходили на смесевые ракетные топлива.

А весь сорок второй мы работали по старинке — прессовали шашки на однопроходных прессах, в пресс-формах. Так у нас получались хотя и короткие шашки, но с однородной структурой, и мы по-тихому завидовали советским ракетчикам — ведь у них в ракетах было по семь длинных шашек. Немцы, кстати, тоже так и не освоили толком непрерывную технологию прессования. А может и не пытались — потому-то и отставали в реактивной артиллерии — за СССР с их непрерывной технологией им было не угнаться. Правда, у наших эта технология тоже в массовых масштабах пошла только с апреля сорок третьего, а до этого шашки выдавливали на полупромышленных, тестовых линиях — по ним-то нам и передавали технологию. Но мы и по ней отставали, так что нам весь сорок второй год приходилось запихивать по двадцать восемь шашек длиной шесть сантиметров, тридцать пять, когда перешли на более длинные двигатели, снова двадцать восемь, когда освоили шашки длиной в восемь сантиметров, снова тридцать пять, когда опять увеличили длину двигателей — потребности ракетчиков постоянно убегали от возможностей производства. Хотя казалось бы — чего там — спрессовать сравнительно податливую массу. Ан нет. Попавший воздух мог при прессовании образовать пузыри, и когда фронт огня добирался до них, поверхность горения возрастала, отчего повышалось давление. Недостаточное усилие прессования давало непрочные шашки, так что они могли развалиться в процессе горения — ведь в камере двигателя оно достигало сорока атмосфер. Развалиться шашка могла и из-за внутренних трещин, когда прессовали недостаточно однородную массу, а это снова — резкое увеличение поверхности горения. Причем непредсказуемость всех этих процессов сильно отравляла нам жизнь — двигатели чихали, затухали, резкие скачки давления отклоняли ракеты в сторону от нужной траектории, а то и разрушали приборы или саму конструкцию. Но до причин такого поведения пришлось доходить своим умом — о необходимости тщательного прессования-то нам сказали, а вот зачем это надо делать — как-то упустили из виду — и мы, и советские технологи. И спросить-то уже не успели — один паренек выдал предположение, что все это именно из-за неоднородностей. Для его проверки мы сделали пару десятков шашек с нарушенной структурой — воздушными пузырями, трещинами, включениями непрожелатинированного коллоксилина. И — да, все сошлось, резкие вспышки наблюдались именно тогда, когда огонь добирался до этих неоднородностей. Поэтому тщательная подготовка пороховой массы к прессованию — точное отвешивание компонентов, их перемешивание, предварительное удаление воздуха, вплоть до вакуумирования — стало очередной головной болью технологов.

И если бы не внутренний канал, наверное, половина проблем испарилось бы как дым. Но канал был нужен для поддержания постоянства площади горения — без него шашка сгорала только по внешней поверхности, соответственно, по мере выгорания ее площадь уменьшалась — уменьшалась и тяга двигателя. Канал же позволял шашке гореть и изнутри — по мере того, как внешняя поверхность уменьшалась, поверхность канала точно так же увеличивалась, и общая площадь шашки оставалась почти постоянной.

Ну, ладно — цилиндрический канал — как-то осилили. Так ракетчики вскоре стали придумывать другие формы каналов, чтобы получать нужную динамику полета. Например, они захотели на старте получать увеличенную тягу, чтобы ракета более уверенно выходила из пусковой установки — иначе ее слишком вело в начале траектории, так что оператор не всегда мог ее удержать — скорость-то еще невелика, соответственно, рули работают еще недостаточно эффективно, а увеличивать их площадь — это увеличивать и массу, и аэродинамическое сопротивление, то есть ракета полетит на меньшее расстояние или понесет меньше полезного груза. Понятное дело, ракетчиков такое не устраивало. Соответственно, для ускорения старта надо в начале горения увеличить поверхность горения. Значит, подавай канал такой формы, чтобы в начале горения его поверхность была больше, а потом — снижалась. То есть это был уже не цилиндрический канал, а с выступами — они сгорали в начале работы двигателя, сглаживались почти до цилиндра и далее площадь горения уменьшалась до "нормальной". И попробуй еще отпрессуй эти выступы — так-то их надо бы прессовать вдоль всей длины, но тогда кинематика поверхностей прессования получится очень сложной — в вертикальном направлении — общая прессовка, а в радиальных — прессовка выступов. Поэтому игрались с составом пороха и условиями прессования — вводили еще пластификаторы, уточняли прессформу, чтобы резкие переходы между поверхностями не приводили к ослаблению выступов. Помучались много, но сделали. А ракетчикам подавай уже другую форму канала — они, видите ли, добавили ускорители, так что начальное ускорение теперь получают от них, а вот чтобы ракета летела повыше, теперь ее надо наоборот разгонять в менее плотных слоях атмосферы, чтобы уменьшить потери на сопротивление воздуха, ну и заодно за счет скорости повысить эффективность рулевых поверхностей — так их можно сделать чуть поменьше, а значит и полегче. В общем, как тогда чуть не дошло до драки между ракетчиками и технологами.

Кардинально проблема была решена, когда мы перешли на вибрационное прессование. В СССР прессование пороховых шашек до внедрения шнековых прессов происходило на гидравлических прессах Круппа, которых в нашем распоряжении не было. Поэтому мы сразу применяли механические прессы, отчего, с одной стороны, прессование шло медленнее, с другой, это позволяло более точно дозировать усилия. И вот, введение в эту схему высокочастотных колебаний дало исключительно однородную и прочную структуру пороховых шашек. Да еще дополнительно, в качестве эксперимента, мы заменили часть динитротолуола на пять процентов дигликоля, чтобы повысить калорийность. Пришлось, конечно, пересчитывать сопло, а то давление в камере сгорания стало высоковатым для старой конструкции, но зато увеличились скорость и дальность полета, а усложнение технологии из-за добавления в рецептуру нового компонента было небольшим — тщательно смешивать ингридиенты к этому времени мы уже научились. К тому же кислородный баланс дигликоля был почти в три раза выше, чем у динитротолуола, так что сгорание в камере двигателя происходило полнее, что и повысило тягу. И мы подумывали совсем заменить динитротолуол на дигликоль — тогда, по идее, эффективность пороха еще повысится — ведь применяемый нами и советскими ракетчиками нитроглицерин имел положительный кислородный баланс, а вот динитротолуол был даже хуже дигликоля, который применяли немцы, хотя те, в свою очередь, не применяли в ракетных порохах нитроглицерин, да и в артиллерийских старались его избегать — кушать им, видите ли, хотелось. Правда, в наших порохах этого динитротолуола было процентов десять-пятнадцать, тогда как у немцев дигликоля было под треть — за счет этого их пороха были хуже по калорийности.

Поделиться:
Популярные книги

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Жребий некроманта 3

Решетов Евгений Валерьевич
3. Жребий некроманта
Фантастика:
боевая фантастика
5.56
рейтинг книги
Жребий некроманта 3

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Хочу тебя навсегда

Джокер Ольга
2. Люби меня
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Хочу тебя навсегда

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

Расческа для лысого

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
8.52
рейтинг книги
Расческа для лысого

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Заход. Солнцев. Книга XII

Скабер Артемий
12. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Заход. Солнцев. Книга XII

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам