Чтение онлайн

на главную

Жанры

Шрифт:

И в новых ракетах я тоже предполагал примерно такую же схему. Но тут ко мне пришли конструктора и стали убеждать меня, что надо переходить на другие схемы. Что более всего меня поразило, так это их полное единодушие в данном вопросе. Обычно они приходили к консенсусу после долгих обсуждений и споров, когда доски были не по одному разу исписаны формулами и исчерчены эскизами и схемами, а то приходилось ставить и натурные эксперименты. Тут же — "Хотим гидравлику" — и все тут. Почти ультиматум.

Стали разбираться. И оказалось, что да, гидравлика — не такой уж страшный зверь, как я себе его представлял, а даже совсем наоборот — очень полезная штука. Все дело в потребных усилиях на рулях и в массовой отдаче приводов разных схем — в гидравлических или пневматических она была чуть ли не в десять раз выше, чем в электрических системах. То есть в гидравлике один килограмм оборудования мог дать в десять раз больше мощности. Все дело в том, что в электрических системах крутящий момент ограничен магнитными силами, действующими между ротором и статором. То есть если мы хотим получить более-менее приличные управляющие усилия, нам потребуется более мощных электромотор, который, замечу, практически целиком состоит из медной обмотки, пластин статора и пластин ротора. Стальных. То есть тяжелых. А в той же гидравлике — сравнительно легкие трубочки, пусть и медные или стальные, золотниковые механизмы — да, чуть потяжелее, но не сравнить с массивными электромоторами, еще электромагниты — для управления этими золотниками, но они, опять же, существенно легче, так как им требуется мощность только для управления, а не для непосредственного привода рулями. Ну и сравнительно легкая жидкость.

Которую можно сжимать до двух-трех десятков атмосфер. Проблема лишь в уплотнениях да насосе, но и тут конструктора уверили, что можно поджечь пороховой заряд в небольшой емкости — так и получим нужное для работы гидро- или пневмосистем давление. Ну, понятное дело, если тянуть трубки через весь корпус, то тут уже можно было бы и поспорить, но конструктора продумали и этот момент — когда они развернули очередной эскиз, уже с общей компоновкой ракеты, я сразу выдал — "Утка!". Да, на эскизе была ракета со схемой управления "утка" — за боевой частью шел блок управления, из которого торчали лопасти управления, а в хвосте — лопасти стабилизации, которые уже не занимались управлением. И вся гидросистема хорошо так и компактно размещалась между этими лопастями управления, а к хвостовым стабилизаторам не тянулось вообще ничего. Да, пожалуй, могло и сработать — расчеты показывали экономию почти в три килограмма — скорости-то подросли, соответственно, усилия на рулях тоже становились больше — вот и получалось, что электромагнитами уже не обойтись, да и муторно было с ними управляться — нужно было что-то более стабильное, что не тратило бы энергию на поддержание управляющих плоскостей в каком-то положении — так-то энергия тратилась на постоянную подпитку электромагнита, а тут — довернул передачу, ну или шток — и он зафиксировался в этом положении. Сам. Правда, менять его положение требовалось практически постоянно, но по тем же расчетам получалось, что на сдвиги гидравлических приводов будет все-равно тратиться чуть ли не в десять раз меньше электроэнергии, чем на электромагниты. Так что их по любому надо было заменять, и вопрос был только в том, на что именно — на электромоторы с передачами или на гидравлику-пневматику.

— Вот кстати и на весе механических передач можно сэкономить — приводы там, редукторы… А уж моторы — чтобы сделать их меньше, надо повышать напряжение, а там возникают проблемы со щетками, да и батарей надо больше, так что…

— Ну все, все, уговорили! А на чем остановились-то?

— Да пока склоняемся к гидравлике — там и угловые скорости в десять раз выше, и несжимаемость, а, значит, и точность позиционирования…

Судя по тому, как большинство за редким исключением закивало головами, народ уже решил в пользу гидравлики.

— Только привлеките разработчиков строительной техники — они этой гидравликой уже больше полугода занимаются.

— Да мы уже…

— Ну отлично. Так и решим.

Ага, горизонтальные связи в виде межотраслевых комитетов и рассылки бюллетеней работали. Ну и отлично.

И, надо сказать, новые силовые приводы ракеты показали себя просто замечательно. Собственно, ракета управляется двумя источниками управляющих сигналов, работающими одновременно. Первый источник — оператор, который направляет ракету на цель. До того, как мы перешли на радиолокационное наведение, оператор наводил ракету с помощью телескопов разной кратности — обзорного, с увеличением в десять крат, и прицельного, с увеличением в двадцать. Обзорный позволял находить цель при первоначальном поиске и при наведении, если она выскочит из прицельного. Ну а прицельный позволял наводить более точно и более точно подавать команду на взрыватель. Сначала наведение телескопов и управление ракетой было не связано между собой — оператор следил за целью, поворачивая телескоп одной рукой, а другой — поворачивал рукоятку управления, сигналы с которой передавались на ракету. Схема была явно сложновата, поэтому уже в августе сорок второго в войска пошли системы наведения, в которых ракета управлялась непосредственно поворотами телескопа. Ну, для случаев, когда происходило какое-то рассогласование, например, когда сильный толчок нарушит ориентацию гироскопов, было оставлено и ручное управление, которым оператор мог довернуть ракету на свой маршрут и продолжить управлять ею через телескоп. Правда, при полетном времени в несколько секунд такое удавалось не каждому. И, отслеживая таким образом полет ракеты, оператор направлял ее фактически наперерез, чем снижал перегрузки при маневрировании — наши гироскопы еще не были настолько хорошими, чтобы уравновешивать большие перегрузки — точность изготовления была недостаточной, поэтому мы раскручивали их недостаточно, чтобы они не сместились при слишком резких толчках и поворотах.

Но чрезмерные перегрузки все-равно случались. И именно из-за второго канала управления — собственно стабилизации ракеты. Она ведь летела в воздухе, в котором есть возмущения, вихри, восходящие потоки, то есть она летела в неоднородной среде, которая старалась сбить ракету с пути, заданном оператором. Так помимо неоднородностей среды были и неоднородности изготовления самой ракеты — микрометровые различия в конусности сопла или окружности критического сечения, в процессе горения пороха, в минимальной неодинаковости стабилизаторов — все это также старалось развернуть ракету вокруг оси или повернуть в сторону. И, наталкиваясь собственными неровностями на неровности среды, ракета могла отклоняться очень существенно. Но особенно опасным был именно поворот вокруг оси — ведь управление рассчитано на определенное положение рулей в пространстве, и если ракета повернется, то управляющее воздействие, предполагающее поворот, например, вправо, будет на самом деле поворотом вправо и вверх — управлять таким реактивным снарядом станет очень трудно, а то и невозможно.

И если для старых скоростей хватало и управления на электромагнитах, то на новых ракетах скорости были уже чуть ли не в два раза выше — почти шестьсот метров в секунду. Соответственно, возрастали и нагрузки на рулевое управление. Поэтому новые гидравлические приводы и пришлись как нельзя кстати — их мощности хватало, чтобы преодолевать сопротивление воздуха и поворачивать лопасти на нужный угол, а их компактность и вес не перегружали ракету. Причем, если в старых ракетах с оптическим наведением еще как-то можно было обойтись и электрическими схемами, то в новых ракетах с радиолокационным наведением без гидравлики было уже никак. И все потому, что в новых ракетах мы ухудшили саму динамику полета. Старые ракеты направлялись оператором, поэтому он сам мог предсказать положение цели через некоторое время и, соответственно, он мог направить ракету в ту точку. Получалось, что ракета летела почти по прямой в точку предполагаемой встречи с целью, лишь изредка доворачивая по командам оператора, ну и постоянно борясь со своими неоднородностями и неоднородностями воздушной среды. В новых же ракетах, с радиолокационным наведением, ракета летела точно на цель. В каждый момент времени. А цель ведь сдвигается. Соответственно, и ракета постоянно доворачивает вслед за целью. Так мало того, что цель сдвигается, радиолокационный сигнал тоже непостоянен, он показывает положение цели плюс-минус какой-то градус, причем, из-за неоднородности приходящих сигналов, этот сигнал может чуть ли не скакать на несколько градусов. Мы, конечно, сразу же сделали фильтры, которые выдавали средний угол между несколькими замерами, поэтому такое скакание сглаживалось. Но все-равно ракете приходилось маневрировать не только из-за неоднородностей, но еще и из-за движения цели и "движения" сигнала. И особенно — на конечном участке, где до цели оставалось уже совсем ничего, соответственно, в каждый момент времени она сдвигалась на все больший угол и ракете приходилось все сильнее маневрировать. То есть перегрузки возрастали многократно. Все потому, что мы пока не разработали схему автоматического предсказания положения цели. Правда, осенью сорок третьего ожидалась рабочая схема ручного предсказания, когда оператор мог направлять ракету не на цель, а в точку пространства перед целью — почти как в старых ракетах с визуальным наведением, но на новой технологической базе. Но в августе сорок третьего такой аппаратуры еще не было. Так что без гидравлики было уже совсем никак.

Правда, пришлось очень много поработать над самой схемой управления. Ведь сам поворот не происходит одномоментно — раз! — и повернули. Нет, это целый переходный процесс. Ведь на момент поворота лопасти ракета летит еще в старом направлении, соответственно, чтобы повернуть, необходимо преодолеть инерцию этого движения и направить ее на новый путь. А тут еще и упругость воздуха, который сначала препятствует движению ракеты, а потом, когда ракета поменяла свое положение, это сопротивление постепенно исчезает, но при этом еще продолжает действовать инерция, да к тому же, часть корпуса и рулей находится в завихрении, в так называемой тени. А при достаточно резких поворотах начинает играть роль и инерция отдельных частей ракеты. В общем, нюансов было просто море. И все их пришлось исследовать. Так, только за второе полугодие сорок второго мы выполнили более трех тысяч продувок, снимая показания с датчиков. И еще порядка шестисот пробных запусков, чтобы выявить то, что не учли или не проявилось при продувках — для этих целей мы сделали специальные исследовательские ракеты, в которых вместо боевой части были установлены парашютная система и дополнительная передающая аппаратура, которая считывала и передавала данные со множества датчиков, установленных на ракете — давление на рулях, сопротивление рулям, давление на корпусе в нескольких точках, угловые ускорения. И на основе этой информации мы потом разбирали полет — почему пошла штопором, или почему воткнулась в землю сразу после старта, или почему вдруг завиляла после вроде бы небольшого поворота. Мы составляли математическую модель полета, чтобы затем переложить ее в коэффициенты усиления каскадов схемы управления.

Глава 9

И сорок второй и сорок третий мы работали только по статически устойчивым ракетам, которые, если к ним кратковременно приложить возмущающее их полет воздействие, через некоторое время возвращаются в первоначальное положение. Так-то, при достаточно мощных приводах органов управления, высоком быстродействии самих этих органов и достаточности их аэродинамических усилий, можно отправлять в полет хоть стол — просто рулевым приводам придется сильнее компенсировать постоянно возникающие опрокидывающие моменты, отчего частота колебаний приводов будет очень высокой и с довольно большими амплитудами. И как раз статически устойчивая ракета требует меньших частот колебаний приводов, чем статически неустойчивая, то есть ей требуется реже "махать" рулями — ведь она стремится вернуться в стабильное состояние, как бы сама гасит возникающие от возмущений колебания, а вторую — наоборот — надо постоянно возвращать в устойчивое состояние — и для них нужны рули с частотой колебаний — точнее — управляющих поворотов — как минимум в два-три раза выше, чем для устойчивой, то есть стабильной ракеты. Соответственно, неустойчивой ракете требуется более мощный привод, что увеличивает массу оборудования, а следовательно и ракеты. Правда, есть и обратная зависимость — статически устойчивая ракета требует больше усилий для поворотов, то есть при одинаковых приводах она менее маневренная, и чтобы повысить маневренность, ей, наоборот, потребуются более мощные приводы. Так что после некоторых значений потребных угловых скоростей поворота выгоднее применять как раз неустойчивые ракеты. Но пока, для сравнительно небольших скоростей наших целей, было разумнее применять статически устойчивые ракеты, тем более что не требовалось попадать ракетой непосредственно в самолет, а можно было подорвать ее на некотором расстоянии — поражающие элементы и ударная волна вполне способны разрушить или хотя бы повредить тонкие элементы конструкции немецких самолетов — все-таки это не баллистическая ядерная боеголовка, и даже не бронированный ударный вертолет.

Но и на этом пути нашим ракетчикам пришлось хорошенько потрудиться. Ведь, к сожалению, нельзя просто так взять и поменять, скажем, длину ракеты, или размах крыльев — от этого меняется вся аэродинамика ракеты. При ее полете аэродинамическое сопротивление приложено в центре давления и давит назад. И при маневрах аэродинамические силы прикладываются к центру давления. А вращаться под действием этих сил ракета будет вокруг центра масс всех ее частей. И в зависимости от их взаимного расположения этих центров характер вращения будет различным, а в зависимости расстояния, или плеча между этими центрами — зависит скорость этого вращения. Можно представить ракету в виде стержня, который прибит гвоздем в центре масс, а аэродинамические силы — рукой, которая толкает стержень в точке, соответствующей центру давления, причем толкает, как правило, не точно вдоль стержня, а почти всегда — под некоторым углом. Так, если центр масс находится впереди центра давления, то получается, что толкание выполняется в направлении от центра масс, то есть стержень как бы тянут. Поэтому, слегка повернувшись вокруг центра масс, ракета успокоится в новом положении, до следующего толчка — это статически устойчивая ракета. А вот если центр масс находится сзади, то аэродинамические силы, наоборот, направлены в сторону центра масс и опрокидывают ракету, поворачивая ее вокруг центра масс вверх или вниз или вправо-влево — ракета получается статически неустойчивой. Поэтому местоположение этих двух центров оказывает определяющее влияние на устойчивость ракеты в полете. Да и не только ракеты, а любого летящего тела.

То есть надо так разместить центр давления, чтобы он был сзади от центра масс, причем не слишком близко, чтобы был запас устойчивости, иначе придется тратить много энергии на выравнивание ракеты. Но и слишком далеко размещать тоже не надо, иначе много энергии придется тратить уже на ее повороты. И вот, наши конструктора после каждого изменения в конструкции ракет пересчитывали положение центров давления, и если они не устраивали, то меняли габариты отдельных элементов. Собственно, ракету разбивали на отдельные элементы — носовую часть, цилиндрическую часть с блоком управления и ракетным двигателем, хвостовую часть, рулевое оперение и крылья — и для каждой рассчитывали центр давления данной части, а затем, исходя из расстояний между ними — общий центр давления всей ракеты. И затем сравнивали его с положением центра масс. Причем обе величины менялись с течением времени полета — от давления воздуха и скорости полета менялось положение центр давления, а центр масс менял свое положение по мере выгорания топлива — он сдвигался вперед, увеличивая устойчивость и уменьшая маневренность. Соответственно, конструктора разбивали возможные режимы полета на сетку значений скорость-давление воздуха — и для каждого узла рассчитывали положение центров. Для "вертикалок" было проще — они летели только вверх, поэтому у них хотя бы давление менялось только в одну сторону. У новых же ракет, что мы впервые применили в начале августа сорок третьего, полет мог происходить и по горизонтали. Соответственно, набор сочетаний давление-скорость-масса увеличивалась многократно. И без ЭВМ расчеты заняли бы очень много времени. А так, за полчаса просчитав все контрольные точки, ЭВМ распечатывала несколько страниц с цифровыми колонками, и конструктора погружались в их изучение, изредка выдавая "Ага! Я же говорил!" или "Зар-р-раза! Опять ушла в минус!". И по результатам расчетов делали перекомпоновку — удлиняли или укорачивали нос, чтобы сдвинуть центр давления назад или вперед, удлиняли или укорачивали корпус, чтобы сдвинуть центр вперед или назад, меняли размах или форму крыльев — последним пользовались чаще всего, так как корпус нельзя было делать слишком коротким, иначе не поместится топливо и аппаратура, его нельзя было делать и слишком длинным, чтобы он мог выдерживать перегрузки при маневрах — ограничений хватало. Мы поэтому-то и оставили толщину стенок в два миллиметра и дальше не снижали — иначе без стрингеров корпус получался очень нежестким и сминался даже при небольших маневрах — это мы выяснили даже без полетов, на стендах. А вот что проявилось только в полетах, так это возникновение резонанса между рулями и корпусом — при утоньшении стенок собственная частота корпуса уменьшалась, а при уменьшении устойчивости возрастала частота колебаний рулевого оперения, так как приходилось чаще подправлять начинавшую сходить с курса ракету. И в какой-то не очень прекрасный момент эти частоты стали близки. Первая ракета просто отказала и грохнулась на землю. Оказалось, в ней разрушились три лампы — аппаратура не была разбита вдребезги только потому, что парашютная система управлялась в том числе и набегающим потоком, механически — прекратился поток — выпускай парашют. Но причина этого была непонятна. И пришлось сделать более сотни запусков, прежде чем нашли виновника — ведь частоты совпадали далеко не всегда — в какие-то дни воздух был, например, спокоен, и требовалось меньше подруливаний — ракета идет нормально. В какие-то дни, наоборот, возмущений воздуха слишком много, и требуются постоянные подруливания, но, видимо, рулевое управление быстро проскакивало резонансные частоты — и ракета снова летела нормально! На этом резонансе мы потеряли полтора месяца — как раз октябрь сорок второго и половину ноября.

Поделиться:
Популярные книги

Искушение генерала драконов

Лунёва Мария
2. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Искушение генерала драконов

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Третье правило дворянина

Герда Александр
3. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Третье правило дворянина

Третий. Том 2

INDIGO
2. Отпуск
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 2

Лорд Системы 11

Токсик Саша
11. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 11

Обыкновенные ведьмы средней полосы

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Обыкновенные ведьмы средней полосы

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Неудержимый. Книга VI

Боярский Андрей
6. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга VI

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия