Популярная история - от Электричества до Телевидения
Шрифт:
1803 г. Риттер
В 1803 году лектор Йенского университета Иоганн Риттер, который 3-мя годами ранее 1-м получил газообразный кислород при разложении воды (см. выше), после многих экспериментов построил прототип аккумулятора — он сконструировал столб из 40 медных кружков и 40 промежуточных влажных кружков и соединил его концы проволокой с «Вольтовым столбом» из 100 элементов. Когда он разомкнул провода, то у медного столба остался заряд электричества — при этом полюсные концы были противоположны полюсам «Вольтова столба». Этот «вторичный столб» или «зарядный столб» стал предметом большого интереса
1804 г. Гумбольдт, Сальва
В 1804 году член Берлинской академии барон и крестник короля Пруссии Фридриха Вильгельма II Александр фон Гумбольдт (1769–1859) после 5-летней научной экспедиции по странам Карибского бассейна и Латинской Америки вернулся в Европу. Для проведения своей экспедиции Гумбольдт в 1799 году заручился личным разрешением короля Испании Карла IV. Научные результаты экспедиции Гумбольдта и его коллеги ботаника Айме Бонплана, которая исследовала природу Венесуэлы, Кубы, Антильских островов, Колумбии, Эквадора, Мексики, были огромны, касались они и магнетизма.
«Собственно к физике земли относятся его исследования над земным магнетизмом. Он первый фактически доказал, что напряженность земного магнетизма изменяется в различных широтах, уменьшаясь от полюсов к экватору. Ему же принадлежит открытие внезапных возмущений магнитной стрелки (магнитные бури) и других частностей. Большое значение для науки имели магнитные обсерватории, устроенные по мысли Г. английским, русским и североамериканским правительствами.» [4].
В 1802 году при повторном пересечении Анд в районе Карамака Гумбольдт и Бонплан обнаружили магнитный экватор — это сухопутное место служило точкой отсчета для всех геомагнитных измерений в течение следующей половины столетия. В 1804 году Гумбольдт опубликовал первый набросок линий равной напряженности поля, Гумбольдт писал
«Я усмотрел в законе снижения магнитных сил от полюса к экватору наиболее важный результат моего американского путешествия». [31].
Монументальный труд Александра фон Гумбольдта и Айме Бонплана «Voyage aux regions 'equinoxiales du Nouveau Continent, fait en 1799, 1800, 1801, 1802, 1803 et 1804 par Alexander Humboldt et Aim'e Bonpland» включал 30 томов, и был издан в Париже в 1807–1833 гг. Частью работа была написана на французском, частью на латинском языке, ее полная стоимость составляла астрономическую сумму в 2553 талера и для читателей по такой цене труд Гумбольдта был недоступен. В 1805–1826 гг. Гумбольдт жил в Париже, но затем в 1827 году по просьбе прусского короля переселился в Берлин, где получил пенсию в 5000 талеров, — его работа состояла в сопровождении короля в поездах по Европе. Грандиозный научный труд ни славы, ни денег Гумбольдту не приносил. В 1830 году Гумбольдт в письме сообщал, что в Берлине есть только 3 экземпляра его труда — один у него как автора, один полный в городской библиотеке и один неполный у короля Пруссии — даже для короля работа была слишком дорога. [28].
Испытав относительную неудачу с первым монументальным изданием, Гумбольдт написал и успел издать в 1845–57 гг. 4 тома своей знаменитой работы «Kosmos: Entwurf einer physischen Weltbeschreibung». В частности в томе 2 Гумбольдт утверждает, что именно Колумб в 1492–96 гг. первым обнаружил в Атлантическом океане линию нулевого магнитного склонения (см. 1492 год), и он же первымсделал гениальную догадку о возможности определения долготы места по магнитному склонению, и даже использовал замеры склонения магнитной стрелки для навигации корабля (в 1496 г.).
В книге «Kosmos..» Гумбольдт пишет, что во время своей экспедиции 1799–1804 гг. у берегов Перу в туман лично провел замеры магнитного наклонения, и, повторяя работы Нормана и Гильберта (см. 1576, 1600 гг.), подтвердил возможность определения таким путем широты места с «достаточной
В 1804 году, 22 февраля, в Академии наук Барселоны испанский врач, метеоролог и инженер Франциско СальваКампильо (1751–1828) прочел «Второй трактат о применении гальванизма для целей телеграфии». Доктор Сальва еще в 1796 году получил субсидии от правительства Испании на прокладку 50-километровой телеграфной линии между Мадридом и Аранхуэсом — проект был осуществлен, но это был электростатический телеграф. В 1804 году доктор Франциско Сальва предложил проект многопроводного (не менее 6 проводов) телеграфа с использованием «Вольтова столба» как источника сигнала, а в качестве принимающих элементов предлагались сосуды с водой, которая будет разлагаться под действием электричества и тем самым передавать сообщения. Проект осуществлен не был, но докторФранцискоСальва стал первопроходцем в создании проекта телеграфа использующего линейную батарею. Именно по этому пути спустя 30 лет пошло развитие телеграфии. [32].
1805 г. Гротгус
В 1805 году молодой литовский геолог (немец по национальности) Теодор Гротгиус (1785–1822) прибыл в Рим из Неаполя, где он принимал участие в экспедиции на Везувий. По прибытии он опубликовал на французском языке небольшое теоретическое исследование по вопросу разложения воды электричеством — первое научное исследование на эту тему, которое объясняло механизм разложения воды поляризацией молекул, при которой атом кислорода в молекуле поворачивался в сторону положительного полюса, а водород в сторону отрицательного. Исследование было напечатано в Париже в журнале «Annalen де Chemie», затем перепечатано в английских и немецких журналах. Постепенно к теории Теодора Гротгуса присоединились многие ведущие химики, в том числе Дэви — в большей степени теория уроженца Литвы Теодора Гротгуса оказалась верной и сохранилась до наших дней. [11].
1807 г. Дэви
В 1807 году, 6 ноября, английский химик Хэмфри Дэви открыл новый элемент — потассий — калий. Открытие он впервые сделал путем разложения едкого кали электричеством. Дэви писал:
«щелочь та в течение нескольких минут поддерживалась в состоянии яркокрасного каления и полной подвижности. Ложечка находилась в соединении с сильно заряженной положительной стороной батареи из 100 пластин в 6 дюймов, соединение же с отрицательной стороной осуществлялось с помощью платиновой проволоки. При этом разложении наблюдался ряд блестящих явлений. Кали оказалось очень хорошим проводником, и до тех пор, пока цепь не была разомкнута, у отрицательной проволоки был виден чрезвычайно интенсивный свет и колонна пламени, которая, по-видимому, находилась в связи с выделением горючего вещества и подымалась над точкой соприкосновения проволоки с кали. Когда порядок соединения был обращен так, что платиновая ложечка была сделана отрицательной, яркое и постоянное свечение возникло у противоположной точки; явлений воспламенения вокруг нее не наблюдалось, но шарики (это металлический калий), напоминающие пузырьки газа, поднимались в кали и вспыхивали при соприкосновении с воздухом. Платина, как и можно было ожидать, была заметно разъедена, и особенно сильно после соединения ее с отрицательным полюсом. Щелочь в этих опытах оставалась сухой, и представлялось вероятным, что горючее вещество происходило вследствие ее разложения.». [24].