Порядок из хаоса
Шрифт:
Биологический порядок нередко представляют как невероятное физическое состояние, созданное и поддерживаемое ферментами напоминающими демон Максвелла: ферменты поддерживают неоднородность химического состава в системе точно так же, как демон поддерживает разность температур или давлений. Если встать на эту точку зрения, то биология окажется в том положении, которое описывал Шталь. Законы природы разрешают только смерть. Представление Шталя об организующем действии души на этот раз подменяется генетической информацией, содержащейся в нуклеиновых кислотах и проявляющейся в образовании ферментов, которые делают возможным продолжение жизни. Ферменты отодвигают наступление смерти и исчезновение жизни.
Иное значение приобретает (и приводит к иным выводам) биология, если к ней подходить с позиций физики неравновесных процессов. Как теперь известно, и биосфера в целом, и ее различные компоненты, живые или неживые, существуют в сильно неравновесных
Мы намереваемся пойти еще дальше и утверждаем, что, коль скоро условия для самоорганизации выполнены, жизнь становится столь же предсказуемой, как неустойчивость Бенара или падение свободно брошенного камня. Весьма примечательно, что недавно были открыты ископаемые формы жизни, обитавшие на Земле примерно в ту эпоху, когда происходило первое горообразование (самые древние из известных ныне ископаемых жили на Земле 3,8x108 лет; возраст Земли считается равным 4,6x109; образование скальных пород также происходило примерно 3,8x109 лет назад). Раннее зарождение жизни, несомненно, является аргументом в пользу идеи о том, что жизнь — результат спонтанной самоорганизации, происходящей при благоприятных условиях. Нельзя не признать, однако, что до количественной теории нам еще очень далеко.
Возвращаясь к нашему пониманию жизни и эволюции, следует заметить, что оно стало существенно более глубоким, и это позволяет нам избежать опасностей, с которыми сопряжена любая попытка полностью опровергнуть редукционизм. Сильно неравновесная система может быть названа организованной не потому, что в ней реализуется план, чуждый активности на элементарном уровне или выходящий за рамки первичных проявлений активности, а по противоположной причине: усиление микроскопической флуктуации, происшедшей в «нужный момент», приводит к преимущественному выбору одного пути реакции из ряда априори одинаково возможных. Следовательно, при определенных условиях роль того или иного индивидуального режима становится решающей. Обобщая, можно утверждать, что поведение «в среднем» не может доминировать над составляющими его элементарными процессами. В сильно неравновесных условиях процессы самоорганизации соответствуют тонкому взаимодействию между случайностью и необходимостью, флуктуациями и детерминистическими законами. Мы считаем, что вблизи бифуркаций основную роль играют флуктуации или случайные элементы, тогда как в интервалах между бифуркациями доминируют детерминистические аспекты. Займемся теперь более подробным изучением этих вопросов.
Глава 6. ПОРЯДОК ЧЕРЕЗ ФЛУКТУАЦИИ
1. Флуктуации и химия
Во введении к книге мы уже говорили о происходящем ныне концептуальном перевооружении физических наук. От детерминистических, обратимых процессов физика движется к стохастическим и необратимым процессам. Это изменение перспективы оказывает сильнейшее влияние на химию. Как мы узнали из гл. 5, химические процессы, в отличие от траекторий классической динамики, соответствуют необратимым процессам. Химические реакции приводят к производству энтропии. Между тем классическая химия продолжает опираться на детерминистическое описание химической эволюции. Как было показано в гл. 5, основным «оружием» теоретиков в химической кинетике являются дифференциальные уравнения, которым удовлетворяют концентрации веществ, участвующих в реакции. Зная эти концентрации в некоторый начальный момент времени (а также соответствующие граничные условия, если речь идет о явлениях, зависящих от пространственных переменных, например о диффузии), мы можем вычислить их в последующие моменты времени. Интересно отметить, что такой детерминистический взгляд на химию перестает соответствовать действительности, стоит лишь перейти к сильно неравновесным процессам.
Мы уже неоднократно подчеркивали роль флуктуаций. Перечислим кратко наиболее характерные особенности их воздействия на систему. Когда система, эволюционируя, достигает точки бифуркации, детерминистическое описание становился непригодным. Флуктуация вынуждает систему выбрать ту ветвь, по которой будет происходить дальнейшая эволюция системы. Переход через бифуркацию — такой же случайный процесс, как бросание монеты. Другим примером может служить химический хаос (см. гл. 5). Достигнув хаоса, мы не можем более прослеживать отдельную траекторию химической системы. Не можем мы и предсказывать детали временного развития. И в этом случае, как и в предыдущем, возможно только статистическое описание. Существование неустойчивости можно рассматривать как результат флуктуации, которая сначала была локализована в малой части системы, а затем распространилась и привела к новому макроскопическому состоянию.
Такая
Основная теорема теории вероятностей (так называемый закон больших чисел) позволяет оценить ошибку, вносимую флуктуациями. По существу, закон больших чисел утверждает, что при измерении X мы можем ожидать значение порядка N/2±ON/2. При большом N ошибка ON/2, вносимая флуктуациями, может быть также большой (например, если N~1024, то ON~1012), но относительная ошибка, вносимая флуктуациями, порядка (ON/2)!(N/2) или 1/ON стремится к нулю при больших N. Как только система становится достаточно большой, закон больших чисел позволяет отличать средние значения от флуктуаций (последние становятся пренебрежимо малыми).
В случае неравновесных процессов встречается прямо противоположная ситуация. Флуктуации определяют глобальный исход эволюции системы. Вместо того чтобы оставаться малыми поправками к средним значениям, флуктуации существенно изменяют средние значения. Ранее такая ситуация нам не встречалась. Желая подчеркнуть ее новизну, мы предлагаем назвать ситуацию, возникающую после воздействия флуктуации на систему, специальным термином — порядком через флуктуацию. Прежде чем приводить примеры порядка через флуктуацию, нам бы хотелось сделать несколько общих замечаний, чтобы подчеркнуть концептуальную новизну той ситуации, с которой мы столкнулись.
Некоторым читателям, должно быть, известны соотношения неопределенности Гейзенберга, выражающие несколько неожиданным образом вероятностный аспект квантовой теории. Возможность одновременного измерения координат и импульса в квантовой теории отпадает, тем самым нарушается и классический детерминизм. Считалось, однако, что это никак не сказывается на описании таких макроскопических объектов, как живые системы. Но роль флуктуаций в сильно неравновесных системах показывает, что это не так. Случайность остается весьма существенной и на макроскопическом уровне. Интересно отметить еще одну аналогию с квантовой механикой, приписывающей волновой характер всем элементарным частицам. Как нам уже известно, сильно неравновесные химические системы также могут обладать когерентным волновым поведением: таковы, например, рассмотренные нами в гл. 5 химические часы. И снова некоторые из особенностей квантовой механики, открытые на микроскопическом уровне, проявляются теперь и на макроскопическом уровне!
Химия активно вовлекается в концептуальное перевооружение физических наук[163]. По-видимому, мы находимся лишь в самом начале нового направления исследований. Результаты некоторых проведенных в последнее время расчетов наводят на мысль, что в определенных случаях понятие скорости химической реакции может быть заменено статистической теорией, использующей распределение вероятностей реакций[164].
2. Флуктуации и корреляции
Вернемся еще раз к химической реакции типа, рассмотренного в гл. 5. Пусть для большей конкретности мы имеем цепь реакций ADXDF. Приведенные в гл. 5 кинетические уравнения относятся к средним концентрациям. Чтобы подчеркнуть это, условимся писать <X> вместо X. Естественно задать вопрос: какова вероятность того, что в данный момент времени концентрация вещества Х имеет то или иное значение? Ясно, что эта вероятность флуктуирует, поскольку флуктуирует число столкновений между молекулами различных веществ, участвующих в реакции. Нетрудно выписать уравнение, описывающее, как изменяется распределение вероятности Р (X, t) в результате процессов рождения и уничтожения молекул X. Для равновесных или стационарных систем это распределение вероятности можно вычислить. Начнем с результатов, которые удается получить для равновесных систем.