Порядок из хаоса
Шрифт:
Ближе к нашему времени выразителем той же тенденции в формулировке физики без ссоотнесения с необратимостью на фундаментальном уровне стал Эйнштейн.
Историческая сцена разыгралась 6 апреля 1922 г.[247] в Париже на заседании Философского общества (Societe de Philosophie), на котором Анри Бергсон в полемике с Эйнштейном пытался отстаивать множественность сосуществующих «живых» времен. Ответ Эйнштейна был бесповоротен: он категорически отверг «время философов». Живой опыт не может спасти то, что отрицается наукой.
Реакция Эйнштейна в какой-то мере была обоснованна. Бергсон явно не понимал теорию относительности Эйнштейна. Но отношение Эйнштейна к Бергсону не было свободно от предубеждения: duree (длительность), бергсоновское «живое» время относится к числу фундаментальных, неотъемлемых свойств становления, необратимости, которую Эйнштейн был склонен
В этой связи большой интерес представляет переписка между Эйнштейном и одним из ближайших друзей его молодости в цюрихский период Микеланджело (Мишелем) Бессо[248]. Инженер по профессии и естествоиспытатель по призванию, Бессо в последние годы жизни все больше интересовался философией, литературой и проблемами, затрагивающими самую суть человеческого бытия. В своих письмах к Эйнштейну он непрестанно задавал одни и те же вопросы. Что такое необратимость? Как она связана с законами физики? И Эйнштейн неизменно отвечал Бессо с терпением, которое он выказывал только к своему ближайшему другу: необратимость есть лишь иллюзия, обусловленная «неверными» начальными условиями. Диалог двух друзей продолжался многие годы до кончины Бессо, который был старше Эйнштейна на восемь лет и умер за несколько месяцев до смерти Эйнштейна. В последнем письме к сестре и сыну Бессо Эйнштейн писал: «Своим прощанием с этим удивительным миром он [Мишель] ...несколько опередил меня. Но это ничего не значит. Для нас, убежденных физиков, различие между прошлым, настоящим и будущим — не более чем иллюзия, хотя и весьма навязчивая». В эйнштейновском стремлении постичь фундаментальные законы физики познаваемое отождествлялось с незыблемым.
Почему Эйнштейн столь упорно противился введению необратимости в физику? Об этом можно лишь догадываться. Эйнштейн был очень одиноким человеком. У него было мало друзей, мало сотрудников, мало студентов. Он жил в мрачную эпоху: две мировые войны, разгул антисемитизма. Неудивительно, что для Эйнштейна наука стала своего рода средством преодоления бурлящего потока времени. Сколь разителен контраст между установкой на «безвременную» науку и научными трудами самого Эйнштейна! Его мир полон наблюдателей-ученых, которые находятся в различных системах отсчета, движущихся относительно друг друга, или на различных звездах, отличающихся своими гравитационными полями. Все эти наблюдатели обмениваются информацией, передаваемой с помощью сигналов по всей Вселенной. Эйнштейна интересовал лишь объективный смысл этой коммуникации. Однако не будет преувеличением сказать, что Эйнштейн, по-видимому, был весьма близок к признанию тесной взаимосвязи между передачей сигналов и необратимостью. Коммуникация заложена в самой основе наиболее обратимого из процессов, доступных человеческому разуму, — прогрессивного роста знания.
3. Энтропийный барьер
В гл. 9 мы описали второе начало как принцип отбора: каждому начальному условию соответствует некоторая «информация». Допустимыми считаются все начальные условия, для которых эта информация конечна. Но для обращения времени необходима бесконечная информация; мы не можем создавать ситуации, которые переносили бы нас в прошлое! Чтобы предотвратить путешествия в прошлое, мы возвели энтропийный барьер.
Нельзя не отметить интересную аналогию между энтропийным барьером и представлением о скорости света как о максимальной скорости передачи сигналов. Существование предельной скорости распространения сигналов — один из основных постулатов теории относительности Эйнштейна (см. гл. 7). Такой барьер необходим для придания смысла причинности. Предположим, что мы покинули бы Землю на фантастическом космическом корабле, способном развивать сверхсветовую скорость. Тогда мы смогли бы обгонять световые сигналы и тем самым переноситься в свое собственное прошлое. Энтропийный барьер также необходим для того, чтобы придать смысл передаче сигналов. Мы уже упоминали о том, что необратимость и передача сигналов тесно связаны между собой. Норберт Винер убедительно показал, к каким ужасным последствиям привело бы существование двух направлений времени. Следующий отрывок из знаменитой «Кибернетики» Винера заслуживает того, чтобы привести его:
«Очень интересный мысленный опыт — вообразить разумное существо, время которого течет в обратном направлении по отношению к нашему времени. Для такого существа никакая связь с нами не была бы возможна. Сигнал, который оно послало бы нам,
Именно энтропийный барьер гарантирует единственность направления времени, невозможность изменить ход времени с одного направления на противоположное.
На страницах нашей книги мы неоднократно обращали внимание на важность доказательства несуществования. Эйнштейн первым осознал важность такого рода доказательства, положив в основу понятия относительной одновременности невозможность передачи информации со скоростью, большей, чем скорость света. Вся теория относительности строится вокруг исключения «ненаблюдаемых» одновременностей. Эйнштейн усматривал в этом шаге аналогию с запретом вечного двигателя в термодинамике. Однако некоторые современники Эйнштейна, например Гейзенберг, указывали на важное различие между несуществованием вечного двигателя и невозможностью передачи сигналов со сверхсветовыми скоростями. В термодинамике речь идет об утверждении, что некоторая ситуация не встречается в природе; в теории относительности утверждается невозможность некоторого наблюдения, т. е. своего рода диалога, коммуникации между природой и тем, кто ее описывает. Воздвигнув квантовую механику на основе запрета всего, что квантовый принцип неопределенности определяет как ненаблюдаемое, Гейзенберг считал себя следующим примеру Эйнштейна, несмотря на скептицизм, с которым Эйнштейн встретил квантовую механику.
До тех пор пока мы считали, что второе начало выражает лишь практическую невероятность того или иного процесса, оно не представляло теоретического интереса. У нас всегда оставалась надежда, что, достаточно поднаторев в технике, нам все же удастся преодолеть запрет, налагаемый вторым началом. Но, как мы видели, этим надеждам не суждено было сбыться. Корень всех «бед» — в отборе допустимых состояний. Лишь после того, как возможные состояния отобраны, вступает в силу вероятностная интерпретация Больцмана. Именно Больцман впервые установил, что возрастание энтропии соответствует возрастанию вероятности, беспорядка. Но интерпретация Больцмана основывается на предпосылке, что энтропия есть принцип отбора, нарушающий временную симметрию. Любая вероятностная интерпретация становится возможной лишь после того, как временная симметрия нарушена.
Несмотря на то что мы многое почерпнули из больцмановской интерпретации энтропии, наша интерпретация второго начала зиждется на совсем другой основе, поскольку мы имеем последовательность
Только объединение динамики и термодинамики с помощью введения нового принципа отбора придает второму началу фундаментальное значение эволюционной парадигмы естественных наук. Этот пункт настолько важен, что мы остановимся на нем подробнее.
4. Эволюционная парадигма
Мир динамики, классической или квантовой, — мир обратимый. В гл. 8 мы уже отмечали, что в таком мире эволюция невозможна; «информация», представимая в динамических структурных единицах, остается постоянной. Тем большее значение имеет открывающаяся теперь возможность установить эволюционную парадигму в физике, причем не только на макроскопическом, но и на всех уровнях описания. Разумеется, для этого необходимы особые условия: мы видели, что сложность системы должна превышать определенный порог. Впрочем, необычайная важность необратимых процессов свидетельствует о том, что большинство рассматриваемых нами систем удовлетворяет этому требованию. Примечательно, что восприятие ориентированного времени возрастает по мере того, как повышается уровень биологической организации и достигает, по-видимому, кульминационной точки в человеческом сознании.