Чтение онлайн

на главную

Жанры

Предчувствия и свершения. Книга 3. Единство
Шрифт:

Ученые, стремящиеся к краткости, поступают так же — это удобнее, чем применять название «мини-вселенная». Термин, предназначенный для определения всей совокупности мини-вселенных, еще не установлен. Может быть, удобно называть мини-вселенные просто вселенными (с маленькой буквы), подобно тому как мы выделяем нашу Галактику от множества других галактик.

Забегая вперед, заметим, что невозможно обнаружить вселенные, лежащие за пределами горизонта событий. Но это не ограничивает человеческое познание, познавательную силу науки. Ученые считают, что законы природы, действующие в нашей Вселенной, справедливы и за ее пределами. Это позволяет теории проникать дальше, чем наблюдательной астрономии. Человеческая мысль не ограничена даже горизонтом событий.

Следует

обратить внимание на преемственность результатов, получаемых на каждом этапе развития науки. Все совпадающее с опытом сохраняется, все противоречащее опыту отбрасывается.

Ученые теперь думают о том, что происходило при временах меньших, чем 10– 45 с. Они считают, что тогда распадалось на кванты само время и пространство. Как это происходило и сохранились ли до наших дней какие-либо реликты — остатки этой эпохи, — можно только гадать.

Однако знания, уже полученные учеными, приводят к выводу о том, что теория справилась с главной трудностью познания прошлого. В эволюции Вселенной не было состояния, когда вся она была сжата в бесконечно малом объеме, когда плотность и температура должны были быть бесконечно большими.

Новые знания устранили и трудность, вызванную необходимостью жестко задавать начальные условия. Огромный масштаб ускоренного расширения не требует точных знаний того, что было до начала расширения. Эволюция Вселенной не зависит от того, началось ли расширение с размера 10— 24 см или с еще меньшего размера. Но можно с уверенностью сказать, что на этом рубеже она находилась в чрезвычайно плотном и горячем состоянии.

Ученым удалось понять состояние Вселенной до момента, отстоящего всего на 10– 34 с от условного фридмановского начала, проследить за ее переходом от этапа, начавшегося в момент 10– 34 с, вплоть до момента 10– 3 с, когда Вселенная вступила в зону стандартного сценария. Его достоверность подтверждена результатами наблюдений. Один из рубежей определил относительное содержание гелия 25–30 % и водорода 75–70 % с ничтожным содержанием остальных химических элементов; второй — определил температуру реликтового излучения, составляющую 2,7 К.

Мы подошли вслед за учеными вплотную к началу начал. Теперь следует посмотреть, как развитие науки сказалось на наших знаниях о современной Вселенной, ее недалеком прошлом и вероятном будущем.

К нашему времени

Оглянемся назад. Мы проследили за эволюцией Вселенной от момента, отстоящего на 10– 34 с от начала эволюции, если за стартовый момент принять условное начало фридмановского решения уравнений Эйнштейна. Мы знаем, что в действительности Вселенная родилась не из бесконечно малой точки, но о сверхранних этапах ее эволюции еще ничего не известно. Мы знаем лишь то, что тогда все четыре взаимодействия были слиты воедино, материя и энергия тоже слились и стали неразличимы, а температура превосходила 1032 К. Затем Вселенная равномерно расширялась «по Фридману» до тех пор, пока из-за этого расширения плотность материи не стала малой. На рубеже этой эпохи внутреннее давление ложного вакуума пересилило силу гравитации и расширение Вселенной стало ускоренным. Она расширялась все быстрее, пока ложный вакуум не потерял устойчивости. Тогда из него заново родилась горячая материя с температурой около 1023 К, а расширение снова стало фридмановским и осталось таким до сих пор. Скорость этого расширения медленно убывает под действием силы тяготения, температура продолжает неуклонно падать. Мы проследили эту стадию до тех пор, пока температура не упала примерно до 4000 К. Возраст Вселенной тогда лежал в пределах от 500 000 до 700 000 лет. При температуре в 4000 К электроны соединились с ядрами водорода и гелия, образовав нейтральные атомы. Вселенная, наполненная нейтральным газом, стала практически прозрачной для излучения. Фотоны и вещество продолжали расширяться вместе с расширяющимся пространством, но уже независимо.

Мы знаем, что, продолжая расширяться, излучение остывало и его современная температура, температура реликтового излучения, в нашу эпоху стала равной 2,7 К.

Теперь пора узнать, как происходило дальнейшее расширение вещества, которое в то время состояло на 3/4 из водорода и на 1/4 из гелия с ничтожной примесью тяжелого водорода — дейтерия и легкого изотопа гелия-3 и двух изотопов: лития-6 и лития-7. Все остальное вещество и антивещество, как мы знаем, аннигилировало задолго до того, породив кванты излучения — фотоны. Осталось еще множество нейтрино, которые перестали взаимодействовать с остальным веществом на ранних этапах эволюции Вселенной. Существенно, что к тому времени пространство было очень однородно заполнено излучением и веществом.

Теперь полезно еще раз вспомнить Ньютона, который 300 лет назад понял, что вещество, равномерно распределенное в пространстве, не может вечно оставаться в этом состоянии. Если пространство конечно, писал Ньютон, то под действием тяготения все вещество собралось бы в большую сферическую массу в середине этого пространства. Если же пространство бесконечно, то должно образоваться бесконечное количество таких больших масс, разбросанных далеко друг от друга.

Мы знаем, что этот же вывод сохраняется и в Общей теории относительности. Гравитационные силы, силы тяготения, действовали с самого начала эволюции Вселенной. Но на ранних стадиях образованию комков вещества препятствовало внутреннее давление ложного вакуума. А до стадии быстрого расширения и после нее, когда Вселенная была раскаленной и непрозрачной для излучения, сжатию препятствовало давление излучения.

Только после того как при 4000 К вещество стало прозрачным для излучения, дальнейшая эволюция Вселенной начала протекать под преимущественным влиянием гравитации.

В соответствии с мнением Ньютона, малые случайные увеличения плотности вещества начали притягивать соседнее вещество, все больше увеличивая избыточную плотность.

Астрономические наблюдения позволили установить три характерные особенности структуры современной Вселенной (речь идет только о видимой части Вселенной размером 1028 см).

Первая особенность: если оценивать распределение вещества по огромным частям Вселенной размером в сотни миллионов световых лет (около 3 10), то оно оказывается в среднем однородным.

Вторая особенность: галактики, подобные той Галактике, в которой находится Солнце и мы с вами, распределены в пространстве неоднородно. Они отчетливо группируются в еще более крупные структуры — скопления галактик и сверхскопления.

Третья особенность: наряду с этими сверхскоплениями галактик во Вселенной существуют огромные области, где нет ни галактик, ни скоплений галактик.

Эти «пустые» области окружены сверхскоплениями так, что распределение вещества во Вселенной напоминает нерегулярные пчелиные соты. Стенки их образованы сверхскоплениями, там, где встречаются грани этих стенок, в ребрах «сот», плотность галактик особенно велика. Внутри «сот» нет галактик.

Теория, способная правильно описать возникновение неоднородностей в изначально однородной Вселенной, основана на фундаментальном исследовании, опубликованном советским физиком-теоретиком Е. М. Лифшицем в 1946 году. Эта работа выполнена до открытия реликтового излучения (1964 год) и до всеобщего признания теории Большого взрыва.

Теория Лифшица осталась справедливой и в наши дни. Изменились лишь величины, которые следует подставлять в его уравнения. Теперь это должны быть величины, учитывающие современный сценарий эволюции Вселенной и, в частности, роль нейтрино, которые рождались на самых начальных этапах эволюции и затем, на первых секундах эволюции Вселенной, потеряли контакт с остальной материей.

Теперь мы возвратимся к скрытой массе, которую все чаще называют темной массой.

Массу многих скоплений галактик можно определить, наблюдая, как распределены в пространстве и как движутся входящие в них галактики.

Поделиться:
Популярные книги

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

Секси дед или Ищу свою бабулю

Юнина Наталья
Любовные романы:
современные любовные романы
7.33
рейтинг книги
Секси дед или Ищу свою бабулю

Ветер перемен

Ланцов Михаил Алексеевич
5. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ветер перемен

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Бестужев. Служба Государевой Безопасности. Книга вторая

Измайлов Сергей
2. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга вторая

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

В теле пацана 4

Павлов Игорь Васильевич
4. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 4

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска