Приглашение в теорию чисел
Шрифт:
Самюэль Пепис, известный благодаря своему дневнику, был в возрасте около тридцати лет и служил клерком канцелярии лорда-хранителя печати, когда летом 1662 года он решил, что он должен знать кое-что из математики, по крайней мере основы арифметики, чтобы самостоятельно проверять счета. Заметим, что он тогда уже получил степени бакалавра и магистра в Кембридже. В то время было довольно обычным, что хорошо образованный английский джентльмен совершенно не владеет повседневными расчетами; эти расчеты могли перепоручаться младшим счетоводам.
4 июля 1662 года Пепис записывает в своем дневнике: «Вскоре придет мистер Купер, помощник капитана на „Ройял Чарльз", у которого я собираюсь учиться математике, и сегодня мы начнем; он очень
Каждый день и рано утром и поздно вечером Пепис учил проклятую таблицу умножения, с трудом продвигаясь вперед при поддержке своего моряка-учителя. Например, 9 июля он записывает: «Встал в четыре часа утра и снова упорно учу таблицу умножения, которая для меня является главной трудностью арифметики». Так продолжалось несколько дней, пока 11 июля он смог записать: «Встал в четыре часа утра и упорно работал над таблицей умножения, которой я теперь почти овладел». Пепис хорошо использовал полученные с таким трудом знания во всех все более важных постах, на которые он назначался. Однако может показаться слишком быстрым его продвижение, когда вы узнаете, что он был избран членом знаменитой Британской академии наук — Королевского общества — спустя два с половиной года после того, как выучил таблицу умножения.
Мы привели эту историю, которая никоим образом не является уникальной, чтобы подчеркнуть: запоминание таблицы умножения в те дни не было обычным этапом математического знания. Таким образом, мы видим, что использование в нашей арифметике чисел с небольшим основанием дает ряд преимуществ, как механических, так и интеллектуальных. Например, когда основанием является число b = 3, то в таблице умножения
существует только единственное нетривиальное умножение, а именно: 2 • 2 = 4 = (1, 1)3.
Для b = 2 мы имеем совершенно тривиальную таблицу
Система задач 6.3.
1. Доказать, что количество нетривиальных умножений цифр (получающееся отбрасыванием умножений на 0 и 1) в системе с основанием b равно 1/2 (b — 1) (b — 2).
2. Чему равна сумма всех элементов в таблице умножения? Проверьте для b = 10.
§ 4. Некоторые задачи, связанные с системами счисления
Обсудим несколько задач, связанных с системами счисления, которые имеют отношение к выбору оснований систем счисления, удобных для машинного счета. Предположим, что мы имеем дело с обычным настольным арифмометром, который работает при помощи сцепленных числовых колес, каждое из которых имеет 10 цифр: 0, 1, … 9. Если имеется n колес, то мы можем представить все числа вплоть до
N = 99…9 (n раз), (6.4.1)
как и в (6.3.1).
Предположим теперь, что в качестве основания мы взяли число b, отличное от 10, но продолжаем рассматривать числа до N. Тогда мы
D = n b/lg b.
Можно теперь спросить: какое нужно выбрать число b, чтобы получить наименьшее количество чисел, записанных на колесах? Чтобы найти наименьшее значение числа D, в формуле (6.4.2) необходимо лишь исследовать функцию
f(b) = b/lg b (6.4.3)
для различных оснований b = 2, 3, 4… С помощью таблицы логарифмов получаем значения
Последующие значения для f(b) еще больше; например, f(10) = 10, как уже отмечалось. Мы заключаем, что для таких арифмометров имеет место следующее утверждение.
Наименьшее общее число цифр на арифмометре достигается при b = 3.
Видно, что для b = 2 и b = 4 общее число цифр не на много больше; в этом смысле маленькие основания имеют преимущество.
Рассмотрим небольшое изменение этой задачи. Обычные счеты того типа, который иногда используется для обучения детей счету, имеют несколько металлических спиц с девятью [9] подвижными косточками на каждой из них, чтобы отмечать цифры чисел. С таким же успехом можно провести параллельные прямые на листе бумаги и отмечать цифры соответствующим количеством спичек, или же подобно древним начертить эти прямые на песке и отмечать цифры камешками.
Но вернемся к счетам. Если имеется n спиц и на каждой по 9 косточек, то можно представить вновь все целые числа с п знаками вплоть до числа N, записанного в (6.4.1). Теперь зададим следующий вопрос: можно ли, взяв другое основание b, сделать счеты более компактными, т. е. обойтись меньшим количеством косточек?
9
На счетах, принятых в СССР, на каждой спице располагается 10 косточек. (Прим. перев.)
При основании b количество косточек на каждой спице будет b — 1. Как и прежде, для того чтобы счеты имели ту же вместимость N, количество знаков или спиц должно определяться соотношением (6.3.4). Это дает значение
E = n/lg b (b — 1) (6.4.4)
в качестве приближения для общего количества косточек. Чтобы найти, когда это число принимает наименьшее возможное значение, мы должны исследовать функцию