Чтение онлайн

на главную

Жанры

Приглашение в теорию чисел

ОРЕ О.

Шрифт:

a — b = 1 k = k (7.2.5)

есть целое число. Но предположим теперь на мгновение, что а и b — произвольные вещественные числа, необязательно целые. Тогда тот факт, что они сравнимы по модулю 1, означает, что их разность есть целое число, т. е. эти два числа имеют одинаковую дробную часть.

Пример. 8 1/3 ≡ 1 1/3 (mod 1), или

8,333… ≡ 1,333… (mod 1).

Вернемся

к свойствам обычных сравнений целых чисел; с этого момента мы будем всегда считать, что модуль является целым числом т ≥ 2.

Мы можем разделить числовую ось, начиная от начала координат в обоих направлениях на отрезки длиной m, как на рис. 17. Тогда каждое целое число а, положительное или отрицательное, попадает на один из этих отрезков или на одну из точек деления; таким образом, мы можем записать

a = km + r, (7.2.6)

где k — некоторое целое число, а r— одно из чисел

0, 1, 2…, m — 1. (7.2.7)

Рис. 17.

Это является незначительным обобщением деления положительных чисел, описанного в § 3 главы 4. Здесь мы также называем число r в формуле (7.2.6) остатком при делении числа а на число m или остатком по модулю m.

Примеры.

1) а = 11, m = 7, 11 = 7 1 + 4,

2) а = —11, m = 7, —11 = 7 (—2) + 3.

Деление (7.2.6) может быть также записано как сравнение

аr (mod m). (7.2.8)

Таким образом, каждое число сравнимо со своим остатком по модулю m. В приведенных выше примерах мы имеем

11 ≡ 4 (mod 7), — 11 ≡ 3 (mod 7).

Никакие два остатка в (7.2.7) не сравнимы по (mod m), так как разность между любыми двумя из них меньше, чем m. Поэтому два числа, которые не сравнимы по (mod m), должны иметь разные остатки. Итак, мы делаем вывод:

сравнение а b(mod m) выполняется тогда и только тогда, когда числа а и b имеют одинаковые остатки при делении на число m.

Существует другой способ представления этого сравнения. Предположим на мгновение, что а и b — целые положительные числа. Мы видели при обсуждении системы чисел в § 2 главы 6, что когда число а записано при основании m,

а = (аn…,

а1, а0)m,

то последняя цифра а0 является остатком числа а при делении его на число m. Если мы используем этот факт, чтобы иначе выразить нашу интерпретацию сравнения, то можно сказать:

сравнение а b (mod m) выполняется для целых (положительных) чисел а и b тогда и только тогда, когда числа а и b имеют одинаковые последние цифры в записи при основании m.

Например,

37 ≡ 87 (mod 10),

так как эти два числа имеют одну и ту же последнюю цифру в десятичной системе чисел.

Система задач 7.2.

1. Найдите остатки —37(mod 7), — 111 (mod 11), — 365 (mod 30).

§ 3. Алгебра сравнений

Из алгебры мы помним, что уравнения можно складывать, вычитать, умножать. Точно такие же правила справедливы для сравнений. Предположим, что мы имеем сравнения

ab (mod m), сd (mod m). (7.3.1)

По определению, это означает, что

a = b + mk, c = d + ml, (7.3.2)

где k и l — целые числа. Сложим уравнения (7.3.2).

В результате получаем

а + с = b + d + m (k + l),

что можем записать как

а + с ≡ b + d (mod m); (7.3.3)

другими словами, два сравнения можно складывать. Таким же образом можно показать, что одно сравнение можно вычитать из другого, т. е. что

a — c ≡ b — d (mod m). (7.3.4)

Пример.

11 ≡ —5 (mod 8) и 7 = — 9 (mod 8). (7.3.5)

Складывая их, получаем

18 ≡ — 14 (mod 8),

а вычитая,

4 ≡ 4 (mod 8).

Оба эти сравнения справедливы.

Можно также перемножить два сравнения. Из (7.3.1) и (7.3.2) следует, что

ac = bd + m(kdbl + mkl),

Поделиться:
Популярные книги

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Инцел на службе демоницы 1 и 2: Секса будет много

Блум М.
Инцел на службе демоницы
Фантастика:
фэнтези
5.25
рейтинг книги
Инцел на службе демоницы 1 и 2: Секса будет много

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3

Изменить нельзя простить

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Изменить нельзя простить

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Эйгор. В потёмках

Кронос Александр
1. Эйгор
Фантастика:
боевая фантастика
7.00
рейтинг книги
Эйгор. В потёмках

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника