Программирование на языке Пролог для искусственного интеллекта
Шрифт:
• Абстракцию данных можно рассматривать как метод программирования, который облегчает работу со сложными структурами данных и вносит большую ясность и наглядность в программы. В Прологе легко соблюдать основные принципы абстракции данных.
• Часто легко можно осуществить перевод абстрактных математических конструкций, таких как автоматы, на язык определений Пролога, готовых к выполнению.
• Как это было в случае восьми ферзей, многие задачи допускают различные подходы, связанные с разными представлениями этих задач. Часто внесение избыточности в представление экономит вычисления. Происходит как бы проигрыш в рабочем
• Часто основным шагом на пути к решению оказывается обобщение задачи. Парадоксально, но рассмотрение более общей задачи позволяет облегчить формулировку решения.
Глава 5
Управление перебором
Мы уже видели, что программист может управлять процессом вычислений по программе, располагая ее предложения и цели в том или ином порядке. В данной главе мы рассмотрим еще одно средство управления, получившее название "отсечение" (cut) и предназначенное для ограничения автоматического перебора.
5.1. Ограничение перебора
В процессе достижения цели пролог-система осуществляет автоматический перебор вариантов, делая возврат при неуспехе какого-либо из них. Такой перебор — полезный программный механизм, поскольку он освобождает пользователя от необходимости программировать его самому. С другой стороны, ничем не ограниченный перебор может стать источником неэффективности программы. Поэтому иногда требуется его ограничить или исключить вовсе. Для этого в Прологе предусмотрена конструкция "отсечение".
Рис. 5.1. Двухступенчатая функция
Давайте сначала рассмотрим простую программу, процесс вычислений, по которой содержит ненужный перебор. Мы выделим те точки этого процесса, где перебор бесполезен и ведет к неэффективности.
Рассмотрим двухступенчатую функцию, изображенную на рис. 5.1. Связь между X и Y можно определить с помощью следующих трех правил:
Правило 1: если X < 3, то Y = 0
Правило 2: если 3 ≤ X и X < 6, то Y = 2
Правило 3: если 6 ≤ X, то Y = 4
На Прологе это можно выразите с помощью бинарного отношения
так:
В этой программе предполагается, конечно, что к моменту начала вычисления
Мы проделаем с этой программой два эксперимента. Каждый из них обнаружит в ней свой источник неэффективности, и мы устраним оба этих источника по очереди, применив оператор отсечения.
5.1.1. Эксперимент 1
Проанализируем, что произойдет, если задать следующий вопрос:
Рис. 5.2. В точке, помеченной словом "ОТСЕЧЕНИЕ", уже известно, что правила 2 и 3 должны
При вычислении первой цели
Она терпит неудачу, а поэтому и весь список целей также терпит неудачу. Это очевидно, однако перед тем как признать, что такому списку целей удовлетворить нельзя, пролог-система при помощи возвратов попытается проверить еще две бесполезные в данном случае альтернативы. Пошаговое описание процесса вычислений приводится на рис. 5.2.
Три правила, входящие в отношение
Символ '
то пролог-система породит левую ветвь дерева, изображенного на рис. 5.2. Эта ветвь потерпит неудачу на цели
Новая программа, снабженная отсечениями, во всех случаях более эффективна, чем первая версия, в которой они отсутствуют. Неудачные варианты новая программа распознает всегда быстрее, чем старая.
Вывод: добавив отсечения, мы повысили эффективность. Если их теперь убрать, программа породит тот же результат, только на его получение она истратит скорее всего больше времени. Можно сказать, что в нашем случае после введения отсечений мы изменили только процедурный смысл программы, оставив при этом ее декларативный смысл в неприкосновенности. В дальнейшем мы покажем, что использование отсечения может также затронуть и декларативный смысл программы.
5.1.2. Эксперимент 2
Проделаем теперь еще один эксперимент со второй версией нашей программы. Предположим, мы задаем вопрос:
Проанализируем, что произошло. Перед тем, как был получен ответ, система пробовала применить все три правила. Эти попытки породили следующую последовательность целей:
Попытка применить правило 1:
7 < 3 терпит неудачу, происходит возврат, и попытка применить правило 2 (точка отсечения достигнута не была)