Для того чтобы узнать, что переменные PFN и CCA должны интерпретироваться как целые числа без знака, необходимо прочитать справочник. Но мы могли бы восстановить структуру непосредственно по диаграмме. Битовые поля заполняют слово слева
направо. Количество битов указывается как целое число после двоеточия. Указать абсолютную позицию (например, бит 8) нельзя. Если битовые поля занимают больше памяти, чем слово, то поля, которые не помещаются в первое слово, записываются в следующее. Надеемся, что это не противоречит вашим желаниям. После определения битовое поле используется точно так же, как все остальные переменные.
void part_of_VM_system(PPN * p)
{
// ...
if (p–>dirty) { // содержание изменилось
// копируем на диск
p–>dirty = 0;
}
// ...
}
Битовые поля позволяют не использовать сдвиги и наложение масок, для того чтобы получить информацию, размещенную в середине слова. Например, если объект класса
PPN
называется
pn
, то битовое поле
CCA
можно извлечь следующим образом:
unsigned int x = pn.CCA; // извлекаем битовое поле CCA
Если бы для представления тех же самых битов мы использовали целое число типа
int
с именем
pni
, то нам пришлось бы написать такой код:
unsigned int y = (pni>>4)&0x7; // извлекаем битовое поле CCA
Иначе говоря, этот код сдвигает структуру
pn
вправо, так чтобы поле
CCA
стало крайним левым битом, а затем накладывает на оставшиеся биты маску
0x7
(т.е. устанавливает последние три бита). Если вы посмотрите на машинный код, то скорее всего обнаружите, что сгенерированный код идентичен двум строкам, приведенным выше.
Смесь аббревиатур (
CCA
,
PPN
,
PFN
) типична для низкоуровневых кодов и мало информативна вне своего контекста.
25.5.6. Пример: простое шифрование
В качестве примера манипулирования данными на уровне битов и байтов рассмотрим простой алгоритм шифрования: Tiny Encryption Algorithm (TEA). Он был изобретен Дэвидом Уилером (David Wheeler) в Кембриджском университете (см. раздел 22.2.1). Он небольшой, но обеспечивает превосходную защиту от несанкционированной расшифровки.
Не следует слишком глубоко вникать в этот код (если вы не слишком любознательны или не хотите заработать головную боль). Мы приводим его просто для того, чтобы вы почувствовали вкус реального приложения и ощутили полезность манипулирования битами. Если хотите изучать вопросы шифрования, найдите другой учебник. Более подробную информацию об этом алгоритме и варианты его реализации на других языках программирования можно найти на веб-страницеили на сайте, посвященному алгоритму TEA и созданному профессором Саймоном Шепердом (Simon Shepherd) из Университета Брэдфорда (Bradford University), Англия. Этот код не является самоочевидным (без комментариев!).
Основная идея шифрования/дешифрования (кодирования/декодирования) проста. Я хочу послать вам некий текст, но не хочу, чтобы его прочитал кто-то другой. Поэтому я преобразовываю свой текст так, чтобы он стал непонятным для людей, которые не знают, как именно я его модифицировал, но так, чтобы
вы могли произвести обратное преобразование и прочитать мой текст. Эта процедура называется шифрованием. Для того чтобы зашифровать текст, я использую алгоритм (который должен считать неизвестным нежелательным соглядатаям) и строку, которая называется ключом. У вас этот ключ есть (и надеемся, что его нет у нежелательного соглядатая). Когда вы получите зашифрованный текст, вы расшифруете его с помощью ключа; другими словами, восстановите исходный текст, который я вам послал.
Алгоритм TEA получает в качестве аргумента два числа типа
long
без знака (
v[0]
,
v[1]
), представляющие собой восемь символов, которые должны быть зашифрованы; массив, состоящий из двух чисел типа
long
без знака (
w[0]
,
w[1]
), в который будет записан результат шифрования; а также массив из четырех чисел типа
long
без знака (
k[0]..k[3]
), который является ключом.
void encipher(
const unsigned long *const v,
unsigned long *const w,
const unsigned long * const k)
{
unsigned long y = v[0];
unsigned long z = v[1];
unsigned long sum = 0;
unsigned long delta = 0x9E3779B9;
unsigned long n = 32;
while(n–– > 0) {
y += (z << 4 ^ z >> 5) + z ^ sum + k[sum&3];
sum += delta;
z += (y << 4 ^ y >> 5) + y ^ sum + k[sum>>11 & 3];
}
w[0]=y; w[1]=z;
}
}
Поскольку все данные не имеют знака, мы можем выполнять побитовые операции, не опасаясь сюрпризов, связанных с отрицательными числами. Основные вычисления выполняются с помощью сдвигов (
<<
и
>>
), исключительного “или” (
^
) и побитовой операции “и” (
&
) наряду с обычным сложением (без знака). Этот код написан специально для машины, в которой тип long занимает четыре байта. Код замусорен “магическими” константами (например, он предполагает, что значение
sizeof(long)
равно
4
). Обычно так поступать не рекомендуется, но в данном конкретном коде все это ограничено одной страницей, которую программист с хорошей памятью должен запомнить как математическую формулу. Дэвид Уиллер хотел шифровать свои тексты, путешествуя без ноутбуков и других устройств. Программа кодирования и декодирования должна быть не только маленькой, но и быстрой. Переменная
n
определяет количество итераций: чем больше количество итераций, тем сильнее шифр. Насколько нам известно, при условии