Против богов: Укрощение риска
Шрифт:
И существует пятнадцать разных возможных последовательностей исходов, при осуществлении которых ваша команда выиграет четыре игры, в то время как команда соперников победит дважды.
Все остальные комбинации в конце концов приводят к трем нужным для победы соперников выигрышам их команды и меньшему, чем необходимо для победы вашей команды (напоминаем: ей нужны четыре победы), числу ее выигрышей. Это значит, что существует 1 + 6 + 15 = 22 комбинации, при осуществлении которых ваша команда победит
Из примера следует еще кое-что. Зачем ваша команда будет играть все шесть оставшихся игр в последовательности, в которой она может победить досрочно? Или зачем соперники будут играть все четыре игры, если они могут выиграть в трех и этого им будет достаточно для победы?
Хотя на деле ни одна команда не станет продолжать игру после достижения необходимого для определения чемпиона числа выигрышей, логически законченное решение проблемы было бы неосуществимо без рассмотрения всех математических возможностей. Как заметил Паскаль в переписке с Ферма, в ходе решения задачи математические законы должны доминировать над желанием самих игроков, рассматриваемых только как абстракции. Он поясняет, что «для них обоих абсолютно безразлично и несущественно, будет ли [игра] на деле идти до самого конца».
Переписка была для Паскаля и Ферма восхитительным опытом исследования новых интеллектуальных пространств. Ферма писал Каркави о Паскале: «Я уверен, что он способен решить любую проблему, за которую возьмется». В одном из писем к Ферма Паскаль признаётся: «Ваши числовые построения… превосходят мое понимание». В другом месте он характеризует Ферма как «человека такого выдающегося интеллекта… и такого высочайшего мастерства… [что его работы] сделают его первым среди геометров Европы».
У рассматриваемой задачи были аспекты, которые и Паскаля, глубоко погруженного в религиозные и моральные искания, и юриста Ферма беспокоили больше, чем связанные с ней математические проблемы. Согласно полученному ими решению, раздел банка в неоконченной игре в balla затрагивает проблемы морального права. Хотя игроки могли бы сразу поделить банк поровну, это решение Паскалю и Ферма кажется неприемлемым, потому что оно было бы несправедливым по отношению к игроку, который к моменту прекращения игры оказывается впереди16.
Паскаль явно озабочен моральными аспектами проблемы и осторожен в словах. В своих комментариях к этой работе он отмечает: «…в первую очередь следует признать, что деньги, поставленные игроками на кон, им больше не принадлежат… но взамен они получают право ожидать того, что им принесет удача в соответствии с правилами, на которые они согласились вначале». Если они решат остановить игру, не доведя ее до конца, им придется вновь восстановить исходные права на внесенные в банк деньги. Тогда «должно действовать правило, согласно которому деньги нужно распределить пропорционально тому, что каждому обещала удача. <…> Это справедливое распределение известно как раздел». Справедливые пропорции раздела определяют принципы теории вероятностей.
С учетом этого подхода становится очевидным, что решение Паскаля-Ферма ярко окрашено идеей управления риском, хотя они явно не использовали это понятие. Только безумец идет на риск, если правила не определены, будь то balla, покупка акций IBM, строительство фабрики или согласие на удаление аппендикса.
Но помимо моральных проблем, предложенное Паскалем и Ферма решение приводит к точным обобщениям
Последнее письмо в переписке Паскаля и Ферма датировано 27 октября 1654 года. Меньше чем через месяц Паскаль прошел через своего рода мистический опыт. Он зашил описание этого события в свое платье, чтобы носить его у сердца, провозгласив: «Отречение, абсолютное и сладостное». Он отказался от занятий математикой и физикой, отрекся от роскоши, покинул старых друзей, продал всё, кроме религиозных книг, и вскоре ушел в парижский монастырь Пор-Рояль.
В июле 1660 года Паскаль совершил поездку в Клермон-Ферран, недалеко от жилища Ферма в Тулузе. Ферма предложил встретиться, чтобы «обняться и побеседовать пару дней», на пол-пути между двумя городами; он жаловался на плохое здоровье, объясняя нежелание взять на себя труд проехать все расстояние самому. В августе Паскаль в ответ написал:
Я едва помню, что существует такая вещь, как геометрия [т. е. математика. – П.Б.]. Я почитаю геометрию столь бесполезной, что не могу усмотреть разницу между геометром и хорошим ремесленником. Хотя я считаю ее лучшим в мире ремеслом, это все же не более чем ремесло… Весьма вероятно, что я никогда больше не буду думать об этом17.
Во время пребывания в Пор-Рояле Паскаль собрал воедино свои мысли о жизни и религии и опубликовал их в книге, озаглавленной «Pensees» («Мысли»)18. Во время работы над этой книгой он заполнил с обеих сторон два листа бумаги, по словам Хакинга «написанные разбегающимся во все стороны почерком… полные подчисток, исправлений, производящие впечатление запоздалых раздумий». Этот фрагмент приобрел известность как пари Паскаля (le pari de Pascal). Здесь он задается вопросом: «Есть Бог или нет Бога? К чему нам склониться? Разум молчит».
Опираясь на свой анализ вероятных исходов игры в balla, Паскаль ставит вопрос в терминах случайных игр. Он постулирует игру, которая продолжается до бесконечности. В данный момент бросается монета. На что вы поставите – на орла (Бог есть) или решку (Бога нет)?
Хакинг утверждает, что ход рассуждений Паскаля в предложенном им варианте ответа на этот вопрос представляет собой начало теории принятия решений. «Теория принятия решений, – рассуждает Хакинг, – это теория о том, на что решиться, когда неизвестно, что произойдет»19. Принятие такого решения является первым и важнейшим шагом при любых попытках управлять риском.
Иногда мы принимаем решения на основе прошлого опыта, тех экспериментов, которые мы или другие проводили в течение жизни. Но нам недоступен эксперимент, способный доказать бытие или небытие Бога. Зато в наших силах исследовать будущие последствия веры или неверия в Бога. Мы никогда не сможем избавиться от этой дилеммы, потому что самим актом своего существования принуждены играть в эту игру.
Паскаль объясняет, что вера в Бога – это не решение. Вы не можете проснуться утром и сказать: «Сегодня, кажется, я решу верить в Бога». Вы верите или не верите. Решением, следовательно, является выбор или отказ от таких действий, которые будут вести к вере в Бога, подобно общению с благочестивыми людьми и следованию жизни «святой и праведной». Следующий этим предписаниям ставит на то, что Бог есть. Тот, кто не может смириться с ними, ставит на то, что Бога нет.