Против богов: Укрощение риска
Шрифт:
Ужас неожиданно поразил его и с другой стороны. В 1650 году в возрасте 27 лет он стал жертвой частичного паралича, его преследовали страшные головные боли, и было трудно глотать пищу. В качестве лечения доктора предписали ему встряхнуться и вернуться к прежней рассеянной жизни. Не теряя времени, Паскаль последовал их советам. После смерти отца он сказал своей сестре: «Не будем горевать, подобно язычникам, не имеющим надежды»4. Он встряхнулся настолько, что даже превзошел свой прежний разгульный образ жизни, и стал постоянным посетителем парижских игорных домов.
Вернувшись к мирской суете, Паскаль возобновил свои исследования, касающиеся математики и смежных дисциплин.
Примерно в это же время состоялось знакомство Паскаля с шевалье де Мере, который гордился своими математическими способностями и умением просчитывать шансы в казино. Как-то в конце 1650 года в письме к Паскалю он хвастал: «Я открыл в математике вещи весьма необычные, о которых лучшие ученые прежних времен никогда не помышляли и которыми были поражены лучшие математики Европы»5.
Кажется, он сумел произвести впечатление на самого Лейбница, отозвавшегося о шевалье как о «человеке острого ума, который был одновременно игроком и философом». Правда, в другой раз Лейбниц заметил: «Я почти смеялся над важничаньем шевалье де Мере в его письме к Паскалю»6.
Паскаль согласился с Лейбницем. «У месье де Мере, – писал он своему коллеге, – хорошая голова, но он не геометр, а это, сами понимаете, большой недостаток»7. Здесь Паскаль высказался как профессионал, которому приятно уколоть дилетанта. Во всяком случае, он не особенно высоко ставил математические достижения шевалье8.
Однако именно от Паскаля мы узнаём об интуитивном понимании вероятности, которым обладал де Мере. Играя, он ставил вновь и вновь на комбинации, приносившие ему небольшие выигрыши, которые его противники считали чисто случайными. Согласно Паскалю, он знал, что если метнуть одну кость четыре раза, то вероятность увидеть шестерку превысит 50 %, а точнее – 51,77469136 %. Его стратегия заключалась в том, чтобы выигрывать помалу при большом числе бросков, избегая делать редкие крупные ставки. Эта стратегия требовала много денег, потому что шестерка могла довольно долго не выпадать и приходилось удлинять серию бросков, дожидаясь, пока средний процент появления шестерки превысит 50 % 9.
Де Мере пытался варьировать свою систему, ставя на то, что sonnez, или дубль-шесть, в 24 бросках двух костей должен выпадать с вероятностью, большей 50 %. На этом он потерял довольно много денег, пока не выяснилось, что эта вероятность при 24 бросках составляет только 49,14 %. Если бы он ставил на 25 бросков, при которых вероятность дубль-шесть составляет 50,55 %, он мог бы разбогатеть. История освоения стратегии риска окрашена не только в красный цвет, но и в черный.
До встречи с Паскалем шевалье неоднократно обсуждал со многими французскими математиками задачу об очках – как два игрока в balla должны разделить банк в случае прекращения неоконченной игры, однако никто не смог дать ему вразумительный ответ.
Хотя эта задача заинтересовала Паскаля, он не захотел решать ее самостоятельно. В наши дни такая проблема стала бы темой обсуждения для группы специалистов на ежегодном семинаре одного из научных обществ. Во времена Паскаля такой форум был невозможен. В лучшем случае небольшая компания ученых могла обсудить проблему в интимной обстановке гостиной аббата Мерсенна, но обычно в таких ситуациях прибегали к личной переписке с другими математиками, которые могли
Вряд ли Паскаль мог найти лучшего партнера для решения этой задачи. Ферма был феноменально образованным человеком10. Он говорил на всех основных европейских языках, на некоторых из них даже писал стихи и составлял обширные комментарии к греческим и римским авторам. Кроме того, он обладал редкостным талантом математика. Независимо от Декарта он изобрел аналитическую геометрию, внес большой вклад в раннее развитие численных методов, проводил исследования, направленные на определение веса Земли, изучал оптические явления, в частности рефракцию световых волн. В ходе оказавшейся весьма продолжительной переписки с Паскалем он внес значительный вклад в теорию вероятностей.
Но коронные достижения Ферма относятся к теории чисел – анализу структурных соотношений каждого числа с остальными. Эти соотношения порождают бесчисленные головоломки, некоторые из которых не нашли решения и по сей день. Греки, например, обнаружили то, что они назвали совершенными числами, – это числа, которые равны сумме всех своих делителей, за исключением их самих, подобные 6 = 1 + 2 + 3. Следующее после 6 совершенное число 28 = 1 + 2 + 4 + 7 + 14. Третье такое число – это 496, следующее – 8128. Пятое совершенное число – 33 550 336.
Пифагор открыл то, что он называл дружественными числами или «вторыми я» чисел, представляющие собой суммы всех делителей, отличных от самого числа. Все делители числа 284, то есть 1, 2, 4, 71 и 142, в сумме дают 220; все делители числа 220, то есть 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, в сумме дают 284.
Никому не удалось установить правила для нахождения всех существующих совершенных чисел или всех дружественных чисел, как никто не сумел вывести формулы рядов, в которых они следуют друг за другом. С аналогичными трудностями мы сталкиваемся при рассмотрении простых чисел, подобных 1, 3 или 29, каждое из которых делится только на 1 и на самого себя. С одной стороны, Ферма считал, что он получил формулу вычисления простых чисел, но, с другой стороны, он предупреждал, что не смог теоретически доказать ее всеобщность. Формула, которую ему удалось найти, выдает 5, затем 17, затем 257 и, наконец, 65 537 – всё простые числа, а следующим числом, получаемым на основе его формулы, оказывается 4 294 967 297.
По-видимому, наибольшую славу Ферма принесло нацарапанное на полях «Арифметики» Диофанта утверждение, известное как великая теорема Ферма. Несмотря на трудность его доказательства, суть этого утверждения изложить несложно.
Греческий математик Пифагор впервые показал, что квадрат наибольшей стороны прямоугольного треугольника, гипотенузы, равен сумме квадратов двух других его сторон. Диофант, один из древнейших исследователей квадратных уравнений, написал сходное выражение: х4 + у4 + z4 = и2. «Почему, – спрашивает Ферма, – Диофант не искал две [вместо трех] четвертых степени, дающих в сумме квадрат некоего числа? Дело в том, что это невозможно, и мой метод дает возможность доказать это со всей строгостью»11. Ферма заметил, что Пифагор был прав, написав а2 + b2 = с2, но а3 + b3 не будут равны с3 и ни для одного показателя степени, большего чем 2, такое равенство не будет выполняться: теорема Пифагора верна только для квадратов.