Чтение онлайн

на главную

Жанры

Пять возрастов Вселенной
Шрифт:

Если принять во внимание, что Вселенной всего десять миллиардов лет, мысль о том, чтобы провести опыт по измерению времени в квадрильон квадрильонов лет (тридцать космологических декад), выглядит практически нереальной. Однако, если иметь общее представление о процессе радиоактивного распада, становится понятной лежащая в ее основе идея. Все частицы, в данном случае протоны, не живут в течение какого-то определенного времени, по истечении которого одновременно распадаются. Напротив, существует вероятность распада частиц в любое время. В силу того что вероятность такого распада ничтожно мала, большинство частиц доживет до глубокой старости. Время жизни частицы — это среднее время, которое проживают частицы, а никак

не реальноевремя, отпущенное каждой из них. Всегда будут частицы, которые распадутся рано. И эту разновидность младенческой смертности среди частиц можно измерить опытным путем.

Чтобы обнаружить процесс распада, нужно большое количество частиц. Для пущей ясности предположим, что мы хотим измерить распад протона, предполагаемое время жизни которого составляет 10 32лет. Если взять большой резервуар, содержащий 10 32протонов (в его качестве вполне может выступить небольшой плавательный бассейн двадцать метров в длину, пять в ширину и два в глубину), то в пределах этого экспериментального аппарата будет распадаться приблизительно один протон в год. Если бы нам удалось создать чувствительные инструменты, позволяющие зарегистрировать каждый такой распад, то нам оставалось бы только подождать несколько лет, по истечении которых наше измерение можно было бы считать завершенным. На практике же эти измерения сопряжены с несколько более замысловатыми экспериментальными проблемами, но основная идея при этом вполне понятна. В частности, чтобы узнать ответ на поставленный нами вопрос, совсем необязательно ждать 10 32лет. Эксперименты такого типа уже показали, что время жизни протона превышает 10 32лет. В настоящее время эксперименты по обнаружению распада протона продолжаются.

Распад протона можно предсказать в очень общих терминах. В ранней Вселенной какой-то процесс, протекавший с нарушением барионного числа, создал вещество, которое мы наблюдаем в современной нам Вселенной. Вспомним, что небольшой избыток вещества над антивеществом образовался в первую микросекунду истории космоса. Количество вещества во Вселенной может превышать количество антивещества только в том случае, если в результате какого-то физического процесса образуется дополнительное барионное число. Но если может иметь место подобный процесс, в ходе которого нарушается закон сохранения барионного числа, значит, протоны обречены на гибель. Тогда распад протона — это лишь вопрос времени.

Возможные пути распада протона, упомянутые до сих пор, не включают четвертой силы природы — гравитации. Вместе с тем именно сила гравитации управляет дополнительным механизмом распада протона. На самом деле, протон не является неделимой частицей: он образован тремя составляющими частицами, которые носят название кварков. Кварки в протоне не пребывают в покое: они находятся в состоянии постоянного возбуждения. Хоть и очень-очень редко, но они все же могут занять почти одно и то же положение внутри протона. Как только такое схождение происходит, если кварки оказываются достаточно близко друг к другу, они могут слиться в микроскопическую черную дыру. Оценки среднего времени, которое потребуется протону, чтобы туннелировать в миниатюрную черную дыру, весьма разнятся: от сорока пяти до ста шестидесяти девяти космологических декад, причем предпочтение отдается меньшему концу этого диапазона. Нет нужды говорить, что этот процесс еще недостаточно хорошо изучен, вследствие чего соответствующее ему время жизни протона может быть названо только в очень грубом приближении. Но если только протоны не распадутся еще раньше, им суждено исчезнуть в ходе этого процесса — принять смерть от силы гравитации.

Как мы расскажем в следующей главе, черные дыры тоже не вечны. Причем маленькие черные дыры живут гораздо меньше больших. После самостоятельного превращения протона в черную дыру он почти мгновенно испарится, оставив после себя позитрон. Таким образом, протон служит еще одним полем боя гравитации и термодинамики. Из-за неослабевающего действия гравитации, рано или поздно, она может спровоцировать гибель протонов

и образование крошечных черных дыр. Но этот явный триумф гравитации недолговечен. Черные дыры испаряются сразу после их появления. Большая часть массы-энергии протона уходит в излучение, энтропия высвобождается во Вселенную, и термодинамика празднует окончательную победу.

Существует еще один, даже более экзотический, механизм распада протонов. Вакуумные конфигурации пустого пространства могут иметь более одного возможного состояния. В принципе, вакуум способен самопроизвольно изменять свою конфигурацию в ходе процесса квантово-механического туннелирования. Поскольку переходы вакуума из одного состояния в другое вызывают изменения барионного числа, они могут послужить спусковым крючком для протонного распада. Однако подобные переходы сильно подавлены, вследствие чего они требуют огромного времени. В отсутствие более быстрого пути распада протоны будут разрушены под действием этого механизма в сто сороковую-сто пятидесятую космологическую декаду.

Судьба вырожденных остатков

Заключительная глава звездной эволюции являет себя в распаде протонов. Хотя истинное время жизни протона опытным путем измерено не было, в данной книге мы принимаем, что типичное время жизни протона составляет тридцать семь космологических декад (десять триллионов триллионов триллионов лет). Когда протоны распадаются внутри звезды, например внутри белого карлика, образовавшаяся энергия пополняет энергетические запасы этой звезды. Наиболее распространенными продуктами этого распада являются позитрон и пион, причем последний мгновенно распадается на высокоэнергетические гамма-лучи. Позитрон быстро находит электрон, и две эти частицы аннигилируют, образуя еще два высокоэнергетических фотона гамма-излучения. Таким образом, в конечном итоге масса покояпротона превращается в гамма-излучение, нагревающее звезду. Следовательно распадающиеся протоны обеспечивают звезду внутренним источником энергии, только вот цена этого невероятно высока: чтобы создать тепло и свет, звезда должна отдать свою собственную массу покоя.

Белый карлик, существующий за счет распада протона, имеет светимость примерно в четыреста ватт: этого едва хватит на то, чтобы поддержать свечение нескольких электрических лампочек. Светимость целой галактики таких звезд в десять триллионов раз меньше светимости нашего Солнца. Даже если сложить мощности излучения всех звезд во всех галактиках, которые в настоящее время попадают в пределы нашего космологического горизонта, получившаяся светимость все равно будет в сто раз меньше светимости нашего Солнца. Да уж, такое будущее вряд ли можно назвать светлым.

Излучение внутри белого карлика будет рассеиваться много раз, прежде чем доберется до поверхности звезды. В эту будущую эпоху температура поверхности белого карлика составит всего 0,06 градусов Кельвина — примерно в сто тысяч раз холоднее Солнца. Так что эти четырехсотваттные лампочки вряд ли сгодятся в качестве настольных. Они испускают излучение, характеристическая длина волны которого равна пяти сантиметрам — приблизительно в пятьдесят тысяч раз длиннее тех волн, которые способен уловить глаз человека.

Во время эволюционной фазы распада протона химический состав белого карлика изменяется до неузнаваемости. Предположим, что мы начали со звезды, состоящей из чистого углерода. Каждое ядро углерода содержит шесть протонов и шесть нейтронов. По мере распада протонов и нейтронов ядра становятся меньше и содержат меньшее количество частиц. В ходе этого процесса исходные ядра углерода сокращаются до одной частицы, и звезда завершает свой жизненный цикл в виде чистого водорода.

Эту простую картину несколько осложняют две вещи. Во-первых, высокоэнергетическое излучение, которое выделяется в результате распада протона, может высвободить из ядер другие протоны и нейтроны. Эти освобожденные частицы, как правило, отказываются от своей вновь обретенной свободы и объединяются с другими ядрами. В среднем, каждый распад протона сопровождается одним переходом дополнительного протона или нейтрона от одного ядра к другому. Таким образом, мы получаем своего рода ядерную чехарду.

Поделиться:
Популярные книги

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Системный Нуб

Тактарин Ринат
1. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Я граф. Книга XII

Дрейк Сириус
12. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я граф. Книга XII

В теле пацана 6

Павлов Игорь Васильевич
6. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 6

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Ты предал нашу семью

Рей Полина
2. Предатели
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты предал нашу семью

Огненный князь 6

Машуков Тимур
6. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 6

Маверик

Астахов Евгений Евгеньевич
4. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Маверик

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

В ожидании осени 1977

Арх Максим
2. Регрессор в СССР
Фантастика:
альтернативная история
7.00
рейтинг книги
В ожидании осени 1977