Ритм Вселенной. Как из хаоса возникает порядок
Шрифт:
На первый взгляд кажется удивительным, что между неистовым миром сверхгорячей плазмы на Солнце, где атомы регулярно теряют свои электроны, и спокойным миром биологических осцилляторов, в котором светлячки тихо мерцают, расположившись на берегах реки, может существовать какая-то связь. Действующие лица разные, но абстрактные картины взаимодействия между ними, по сути, одинаковы. Когда эта связь была выявлена, нам удалось перенести методы Ландау на модель Курамото, раскрыв таким образом тайну, которая многие годы не давала покоя ученым. Биологии также удалось внести вклад в развитие физики. Джон Дэвид Кроуфорд, физик из Питтсбургского университета, смог применить результаты, полученные при исследовании биологического синхронизма, для решения давней проблемы, касающейся поведения плазмы [49] .
49
Джон Дэвид Кроуфорд – блестящий ученый, занимающийся прикладной математикой. Причиной его ранней смерти стало заболевание раком. Составить некоторое представление о его выдающихся работах по связанным осцилляторам и плазме можно, ознакомившись, например, с такими статьями: John David Crawford, “Amplitude expansions for instabilities in populations of globally-coupled oscillators,” Journal of Statistical Physics 74 (1994), pp. 1047–1084,
Теории взаимной синхронизации биологических осцилляторов оказались правильными с математической точки зрения. Они пролили свет на один из самых фундаментальных механизмов самоорганизации. Однако предстояло ответить на более сложный вопрос: насколько точно эти модели описывают реальность. Позволяют ли они предсказывать явления, которые согласуются с данными, описывающими реальных светлячков, клетки сердца или нейроны [50] ?
Этого мы не знаем. До настоящего времени никакие тесты в этом отношении не проводились. Соответствующие эксперименты выполнить было бы очень непросто, поскольку они требуют измерений на уровне отдельно взятых животных или клеток, в частности измерений их естественных частот и их реакций на внешние воздействия разной силы и в определенные моменты времени, а также на уровне сети в целом, чтобы количественно оценить взаимодействия между осцилляторами и результирующее коллективное поведение. Особенно трудно измерить взаимодействия между парами осцилляторов. Если эти пары осцилляторов оставить в сети, то на результатах наших измерений может сказаться влияние со стороны других осцилляторов; если же эти пары осцилляторов изъять из сети, хирургическим или иным способом, то в процессе такого изъятия могут пострадать окружающие осцилляторы и соединения между ними. Кроме того, соединения внутри сетей, как правило, остаются неизвестными за исключением нескольких малых систем нейронов. Не зная, кто с кем взаимодействует, невозможно выполнить количественное тестирование моделей. Например, если на дереве расположилось множество светлячков, то вам пришлось бы точно определить, какие из них кого видят, измерить естественные частоты мерцания каждого из них и, наконец, измерить функции чувствительности и влияния каждого насекомого. Никто не пытался выполнить такой эксперимент даже для двух светлячков, не говоря уж о том, чтобы выполнить его для большой совокупности светлячков.
50
Недавно было объявлено о первом экспериментальном тестировании модели Курамото в системе связанных химических осцилляторов; см. Istvan Z. Kiss, Yumei Zhai, and John L. Hudson, “Emerging coherence in a population of chemical oscillators,” Science 296 (2002), pp. 1676–1678. Хадсон и его коллеги подтвердили существование фазового перехода, предсказанного Уинфри и Курамото: синхронизация внезапно наступала, как только сила связи между осцилляторами становилась выше определенного порога. Они также обнаружили, что параметр порядка (показатель степени синхронизации осцилляторов) возрастает по мере увеличения силы связи между осцилляторами, причем Курамото точно предсказал математическую зависимость между параметром порядка и силой связи. Однако о столь же точном тестировании применительно к биологическим осцилляторам еще не сообщалось.
Тест, носящий более качественный характер, следовало бы выполнить, чтобы подтвердить или опровергнуть существование фазового перехода. Прогноз заключается в том, что степень синхронизации должна повышаться резко, а не постепенно, при превышении определенного (критического) значения либо силы связи, либо разброса частот. В этом случае проведение эксперимента также оказалось бы очень непростым делом. Чтобы изменить силу связи между светлячками, вы могли бы поместить их в затемненное помещение, а затем регулировать уровень освещенности в этом помещении с помощью реостата, чтобы насекомые могли лучше или хуже видеть друг друга. В этом нет ничего сложного, но измерить одновременно картины мерцаний у всех насекомых было бы чрезвычайно сложно. Но без такой информации мы не могли бы определить степень синхронизации и, следовательно, не могли бы определить, произошел ли переход. Аналогичный эксперимент было бы легче выполнить с нейронами, но в этом случае вам пришлось бы одновременно фиксировать сигналы от каждой клетки (что, с технической точки зрения, было бы чрезвычайно трудно); параллельно с этим вам пришлось бы дозированно вводить лекарственные препараты для постепенного устранения связей между ними и следить за тем, чтобы эти препараты не повлияли на какие-либо другие свойства этих клеток, помимо их взаимной связи. Пока еще никто не пытался провести столь сложный эксперимент.
Или можно было бы попытаться воспроизвести винеровский спектр частот, с его узким центральным пиком и «провалами» по обе стороны от пика. Это было важнейшим свидетельством в пользу его теории подтягивания частот, но, учитывая его центральную роль, мне всегда казалось странным, что я никогда не слышал о попытках такого воспроизведения. И еще кое-что казалось мне подозрительным. Если Винеру и его сотрудникам действительно удалось найти важнейшее доказательство – спектр с двойным провалом, который, по мнению Винера, является свидетельством синхронизации, – то почему он не предоставил соответствующие данные, которые говорили бы сами за себя? В своей книге «Нелинейные задачи в теории случайных процессов», опубликованной в 1958 г. [51] , он предложил схематическую картину спектра, которую мы видели ранее, с ее идеально симметричным пиком, возвышающимся меж двух провалов, идеально симметрично расположенных по обе стороны от пика, причем центр этой идеально симметричной картины соответствует в точности 10 циклам в секунду. Это не должно было никого ввести в заблуждение. На осях предложенной им диаграммы даже не было разметки. Впоследствии – в книге «Управление и связь в животном и машине. Новые главы кибернетики», изданной в 1961 г. [52] , – Винер наконец-то представил кое-какие реальные данные (предположительно, это был самый убедительный пример, имевшийся в его распоряжении), однако на рисунках отсутствовал его любимый «провал».
51
В русском переводе книга вышла в 1961 году. Прим. ред.
52
В русском переводе книга вышла в 1963 году. Прим. ред.
Несколько лет тому назад я спросил у Пола Раппа, биолога-математика и эксперта по мозговым волнам, не приходилось ли ему встречать такой спектр в своих собственных измерениях. Нет, не приходилось, но если бы такой спектр действительно существовал, то обнаружить его было бы не так уж сложно. Он провел ряд новых экспериментов, целенаправленно пытаясь обнаружить такой эффект, но даже при использовании новейших технологий его попытки не принесли желаемого результата. Неужели Винер пытался ввести нас в заблуждение? Неужели столь любимый им «провал» был лишь плодом его богатого воображения? Я не хотел верить этому, поэтому лично для меня было огромным облегчением узнать подоплеку того, что в действительности случилось в 1958 г.
Во время посещения мною конференции по прикладной математике в июле 2001 г. мне удалось поговорить с Джеком Кауэном, биологом-теоретиком, который долгое время работал над математическими моделями мозга. Рассчитывая на то, что Джек Кауэн располагает обширной информацией об альфа-ритмах, я спросил у него, знаком ли он со старой теорией Винера. Разумеется, ответил он с улыбкой. В то самое время он тоже работал в Массачусетском технологическом институте. Однажды у него состоялась продолжительная беседа с Винером, во время которой тот прочитал ему целую лекцию об интересующем меня спектре. «Норберту вообще нравились люди, готовые слушать его долгие рассуждения».
Джек Кауэн прибыл в МТИ осенью 1958 г. и был включен в группу аспирантов, работающих под руководством Уолтера Розенблита. Примерно в то же время Маргарет Фриман, работавшая исследователем в группе Розенблита, выполнила первые измерения спектра. Именно она открыла этот пресловутый пик и двойной «провал», которые привели в восторг Винера. Несмотря на то что это были лишь предварительные результаты, Винер раструбил о них в своей книге, опубликованной в 1958 г.
К сожалению, результаты, полученные Фриман, оказались неправильными. «Другие исследователи пытались воспроизвести эти результаты, – рассказал мне Кауэн, – а когда их попытки завершились неудачей, все теоретические построения, базировавшиеся на этих результатах, оказались несостоятельными». Фриман допустила ошибку в своих вычислениях. Когда она повторила свои вычисления, двойной «провал» исчез. Впрочем, спустя три года, когда была опубликована книга «Управление и связь в животном и машине. Новые главы кибернетики», у Винера появился шанс исправить эту досадную ошибку. На этот раз он решил продемонстрировать реальные данные. Вот как он описывает этот спектр:
Когда мы анализировали эту кривую, мы обнаружили ярко выраженный провал мощности вблизи частоты, составляющей 9,05 цикла в секунду. Точка, в которой наблюдается существенное «проседание» спектра, очень резкая и характеризует объективное количественное значение, которое можно проверить с гораздо большей точностью, чем любую количественную величину, встречавшуюся до настоящего времени в электроэнцефалографии [53] .
В приведенной цитате голос Винера звучит очень уверенно. Это голос гения, который решил поучить уму-разуму специалистов по электроэнцефалографии. Но затем его речь начинает звучать гораздо осторожнее, а его высказывания носят сослагательный характер.
53
Cybernetics, pp. 190–191.
У нас имеются некоторые свидетельства того, что в других кривых, которые мы получили, но надежность которых вызывает определенные сомнения, это внезапное падение мощности сопровождается весьма кратковременным внезапным подъемом, в результате чего между ними наблюдается провал кривой. Так это или нет, у нас есть все основания утверждать, что мощность в пике соответствует оттягиванию мощности от участка, на котором наблюдается проседание кривой.
Когда я впервые прочитал это десять лет тому назад, я был поражен невнятностью этих высказываний. Это было так непохоже на Винера, обычно предпочитающего смелые и безапелляционные формулировки. Но когда я читаю этот отрывок сейчас, он берет меня за душу. Я будто слышу голос человека, переживающего мучительную борьбу с самим собой, – ученого, цепляющегося за идею, которая, по его твердому убеждению, должна быть правильной, и вместе с тем пытающегося найти в себе силы быть интеллектуально честным. Несмотря на то что «провал» нигде не обнаруживается, он призывает нас верить, что этот «провал» обязательно обнаружится в ходе других исследований, но он не позволяет себе «давить» на нас слишком сильно: он допускает, что результаты этих других исследований могут «вызывать определенные сомнения», и говорит, что существуют лишь «некоторые свидетельства» наличия «провала» в кривых. Есть этот «провал» или его нет, последнее предложение показывает, что Винер вовсе не был намерен отказываться от представления о том, что осцилляторы синхронизируются путем подтягивания частот друг друга. Он был уверен, что такой механизм синхронизации является универсальным. Этот механизм был обязан играть важную роль. Винер не желал пасть жертвой того, что Т. Г. Хаксли называл «великой трагедией науки – уничтожения прекрасной теории каким-нибудь отдельным безобразным фактом».
Винер напоминает мне пророка, который знает, как должен быть устроен мир. Это качество наблюдается у других великих ученых. Галилей не открыл бы, что у движущегося тела есть тенденция к продолжению движения (закон инерции), если бы он ограничился описанием того, что происходит в действительности (сила трения приводит к остановке движущегося тела). Абстрагируясь от несущественного и второстепенного, он открыл самый фундаментальный закон механики. Грегор Мендель открыл законы генетики, изучая картины наследования у бобовых культур. Некоторые современные статистики подвергают сомнению данные, полученные Менделем, называя их слишком идеальными, чтобы быть похожими на правду, тогда как другие проявляют большую снисходительность, предполагая, что Мендель скрупулезно отбирал образцы, которые лучше всего подтверждают сформулированные им принципы. Какая бы из этих версий ни казалась вам более правдоподобной, очевидно, что Мендель точно знал, что он хочет доказать.