Чтение онлайн

на главную

Жанры

Роберт Оппенгеймер и атомная бомба
Шрифт:

Луи де Бройль и волновая механика

Проверка квантовой механики на атоме водорода, содержащем только один электрон, показала совпадение результатов теории и эксперимента. Спектр излучения оказался точно таким, как предсказывали расчетные данные. Однако это превосходное соответствие было, к сожалению, нарушено, когда теорию попытались применить к спектру атома гелия, содержащего два электрона. Физики были вынуждены снова вернуться к чисто математическому описанию наблюдавшихся явлений, удаляясь все дальше и дальше от классических представлений. Это направление, возглавляемое прежде всего Луи де Бройлем, Гейзенбергом и Шредингером, привело к созданию новой революционной теории – волновой механики. Новая система позволила не только обосновать уже известные факты,

но предсказала другие, которые были впоследствии подтверждены опытом; кроме того, она объяснила большую часть химических явлений. Вот к этому периоду развития физики и относится начало работы Роберта Оппенгеймера в европейских университетах. Используя могущественное «Сезам, откройся!» – волновую механику, а также все более мощные приборы для наблюдения, физики ринулись в исследования внутриатомной вселенной с тем пылом и жаждой предпринимательства, которые некогда вели конквистадоров к завоеванию сказочных земель.

Основная идея волновой механики заключается в том, что вещество, как и свет, сочетает в себе одновременно свойства волны и частицы, или, если вернуться к первой формулировке Луи де Бройля, любая частица связана с волной. Это справедливо не только для фотонов, которые составляют природу света, но также и для частиц, входящих в состав вещества, например для электронов. Существование волны, связанной с электронами, позволяет догадываться о причине того, почему в структуре, атома возможны только некоторые квантованные орбиты, расчет которых основан на целых числах: до сих пор в физике целые числа служили характеристикой процесса только при интерференции стоячих волн.

Но в применении к электрону, материальной частице, масса которого была уже измерена, представление о волне принималось весьма нерешительно. В 1927 году, в том самом году, когда молодой Оппенгеймер сдавал экзамены на степень доктора в Геттингене, двое его соотечественников – физики Дэвиссон и Джермер – показали, что пучок электронов, пропускаемый через очень тонкие пленки, подчиняется тем же законам дифракции, что и лучи света. А дифракция, хорошо известное из оптики явление, мыслима только в применении к пучкам волн.

Для волновой механики модель Резерфорда-Бора явилась лишь некоторым приближением, дающим более или менее верное изображение первичной идеи об атоме, связанное с привычной трактовкой результатов точных экспериментов. Действительность же оказывается гораздо сложнее. Ядро атома не похоже на Солнце, а электроны и того менее похожи на планеты. Квантовые числа обозначают не орбиты, а уровни и субуровни энергии. Волновая механика в отличие от классической механики не определяет заранее положения электрона в заданный момент. Более того, она доказывает, что такое предсказание невозможно; можно рассчитать только вероятность присутствия электрона в определенный момент в некоторой конкретной части пространства, окружающего ядро. Эта вероятность пропорциональна интенсивности волны в данной области пространства.

Во всех случаях, когда речь идет об измерениях отдельно взятой частицы, большинство предсказаний волновой механики выражается не конкретно, а в виде вероятностей. Это относится, в частности, к предсказаниям положения и энергии частицы в любой будущий момент времени. Введение понятия вероятности привело к большому смятению умов и по существу означало отказ науки от того, что до сих пор считалось ее незыблемым принципом – от причинности явлений в природе. Правильнее было бы сказать, что здесь речь идет о причинности нового типа: результаты расчетов вероятности не являются ни менее строгими, ни менее точными, чем данные вычислений на основе классической механики. Но они более сложны и содержат математические параметры, физический смысл которых трудно себе представить, пользуясь нашим опытом чувственного восприятия мира.

На основе принципов волновой механики Гейзенберг дал математическую формулировку соотношения неопределенностей: некоторые параметры отдельных частиц связаны между собой таким образом, что их можно одновременно измерить только до определенной степени точности. Чем больше увеличивают точность измерения одного параметра, тем больше автоматически возрастает неопределенность другого параметра. Таким образом, чем более точно определяется положение электрона, тем меньше оказывается данных о его количестве движения (т.е. о его энергии), а чем лучше производится измерение количества движения электрона, тем менее точно можно установить его положение. При этом речь идет не о несовершенстве методов эксперимента, а о неизбежном следствии квантовой теории, установленном логическим путем.

«Есть много странного в том, что касается тождественности электронов и их опознаваемости, – отмечает Оппенгеймер. – Все они похожи друг на друга. Присущие им свойства, их заряд, их масса в состоянии покоя – одни и те же. Эту штуку хотелось бы представить себе более ясно, и когда-нибудь это, безусловно, удастся. Если бы классическая физика властвовала безраздельно, то можно было бы всегда опознать определенный электрон, тот самый, который уже наблюдался. Тогда можно было бы, хотя и не без труда, проследить за электроном, начиная с того места, где он находился вначале, не терять из виду его траекторию во время столкновений, взаимодействий, отклонений и его собственных изменений. И если при этом он бы столкнулся со вторым электроном, то можно было бы установить, по какому направлению будет перемещаться первый электрон, а по какому – второй. В действительности дело обстоит совершенно иначе, за исключением некоторых частных случаев, когда столкновения происходят при таких малых энергиях, что частицы могут быть описаны волнами, которые никогда не накладываются друг на друга в одном и том же направлении в один и тот же момент времени. За исключением этих условий, нет возможности различить электроны, тем более что в атомной физике электроны одного и того же атома и даже соседних атомов не имеют точно определенного положения и часто могут занимать один и тот же объем».

Итак, квантовая механика оперирует представлениями, которые могут быть выражены с помощью концепций, заимствованных из нашего макрофизического мира, только в грубом приближении. Этим объясняются те туманные сравнения, которыми пользуются сами физики, когда пытаются объяснить физический смысл хорошо понятного им квантового числа, например спина частицы, нематематическим языком. Спин изображают как вращательное движение самой частицы, подобное вращению планеты около ее оси, однако в отличие от планеты вращательное движение частицы имеет одну особенность: где бы ни находился наблюдатель, он всегда окажется на продолжении оси вращения. Каким образом это оказывается возможным? Справедливо ли предполагать, что частица вращается вокруг своей оси, как планета? «В действительности, – пишет Семон, – ошибка заключается не в наших словах, потому что мы всегда вправе расширять или ограничивать смысл употребляемых понятий, и не в нашей логике; дело в том, что только математическим методом можно точно и без внутренних противоречий описать спин электрона. Ошибка лежит в основе нашего восприятия, которое побуждает нас «увидеть» вращение электрона, в то время как речь идет об элементарной частице, которая подчиняется совершенно иным закономерностям».

Для простых смертных существует много других неясных понятий, с которыми приходится сталкиваться в математическом аппарате волновой механики. Так, например, волна, связанная с системой корпускул, перемещается не в обычном трехмерном физическом пространстве, а в абстрактном многомерном пространстве. Непривычно также появление мнимой единицы (корень квадратный из —1), обозначаемой через i, которая непременно входит в уравнения волновой механики, в то время как согласно здравому смыслу отрицательное число не должно иметь квадратного корня, потому что все квадраты чисел положительны.

А что можно сказать о принципе неопределенности, который с математической точностью устанавливает пределы основной погрешности процесса нашего познания? Остается повторить строку из шутливого стихотворения:

Чтобы понять значенье этих штук,

Закончить надо полный курс наук.

Но и после окончания полного курса следовало двигаться вперед, для того чтобы следить за новыми опытами и теоретическими построениями, создаваемыми в лабораториях и аудиториях Кембриджа, Копенгагена, Геттингена, Парижа и других научных центров.

Поделиться:
Популярные книги

Совок – 3

Агарев Вадим
3. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
7.92
рейтинг книги
Совок – 3

Секретарша генерального

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
8.46
рейтинг книги
Секретарша генерального

Попутчики

Страйк Кира
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попутчики

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Бальмануг. Студентка

Лашина Полина
2. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. Студентка

Физрук: назад в СССР

Гуров Валерий Александрович
1. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук: назад в СССР

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Идеальный мир для Социопата 6

Сапфир Олег
6. Социопат
Фантастика:
боевая фантастика
рпг
6.38
рейтинг книги
Идеальный мир для Социопата 6

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2