Рождение сложности: Эволюционная биология сегодня
Шрифт:
ДНК в норме состоит из двух комплементарных цепочек нуклеотидов. Нуклеотид А всегда стоит напротив Т, Г — напротив Ц. Пары Г-Ц более прочные, они удерживаются вместе тремя водородными связями, а пары А-Т — только двумя.
Во время репликации (копирования, удвоения) две цепочки разделяются, и на каждой по принципу комплементарности синтезируется новая цепочка, как показано на рисунке. Синтез осуществляется при помощи фермента ДНК-зависимой ДНК- полимеразы. Одна из двух новых цепей синтезируется подряд, без перерывов, потому что направление ее синтеза совпадает с направлением "расплетания" двойной спирали исходной молекулы ДНК. Вторая цепь синтезируется кусочками, задом
На приведенном рисунке возникла мутация — в правой молекуле напротив одного из гуанинов (Г) случайно встал аденин (А) вместо цитозина (Ц). Скорее всего, эта мутация будет замечена и исправлена специальными ферментами, функция которых как раз и состоит в исправлении подобных ошибок. Починку "неправильных" или поврежденных участков ДНК называют репарацией.
В нашем примере мутация возникла случайно. Впрочем, постойте. Случайно ли? Она ведь возникла на стыке двух фрагментов Оказаки, а процесс соединения этих фрагментов — некая особая операция, "технологически" отличающаяся от других этапов репликации, расплетания спирали и присоединения комплементарных нуклеотидов. Может быть, в нашей клетке забарахлила система соединения фрагментов Оказаки? А может, она забарахлила не случайно, а потому, что на нее оказал воздействие какой-то внешний или внутренний фактор? А если он внутренний, то клетка, наверное, может как-то контролировать его? А тогда, если хорошенько разобраться, не может ли в конечном счете оказаться так, что сама клетка "отдала команду" осуществить мутацию в данном месте ДНК? Если мы всерьез задумаемся над этими вопросами, то поймем, что было бы крайне удивительно, если бы живая клетка за 4 миллиарда лет эволюции так и не выработала никаких механизмов управления мутационным процессом. Ведь такие механизмы, во-первых, вполне возможны, во-вторых, могли бы оказаться очень полезными.
Впрочем, нет повода сомневаться в том, что значительная часть мутаций действительно возникает случайно — просто потому, что никакое копировальное устройство не может работать с абсолютной точностью. Кроме того, мутации могут происходить и без репликации, пока ДНК находится в двухцепочечном состоянии, — например, нуклеотиды могут претерпевать химические изменения под воздействием радиации, ультрафиолета или свободных радикалов, возникающих в ходе клеточного дыхания. Большинство ошибок в цепях ДНК будет замечено и исправлено, но какую-то небольшую их часть пропустит, не заметит даже самый строгий молекулярный "корректор".
Но мутации возникают не только потому, что невозможно копировать ДНК с абсолютной точностью. Мы привыкли думать, что мутации — это всегда некое нарушение, неправильность, ошибка, то есть что-то нежелательное, "мешающее нормально жить". В действительности это не всегда так. Изменение наследственной информации — неотъемлемая и необходимая часть жизни. Если бы геномы не менялись, на нашей планете, возможно, до сих пор жил бы только один вид очень примитивных микробов — тот самый Лука, общий предок всего живого (см. главу "Происхождение жизни"). Впрочем, и он бы давно вымер, не смог бы долго продержаться с неизменным геномом. А если бы молекулы РНК копировались с абсолютной точностью на этапе "преджизни", то и никакой Лука никогда бы не появился. Об этом, между прочим, свидетельствуют результаты экспериментов, проводимых исследователями РНК-мира. Для того чтобы в сообществе размножающихся молекул РНК зародилось что-то новое и полезное, совершенно необходимо, чтобы отдельные короткие молекулы, соединяясь в более длинные, могли обмениваться друг с другом своими участками (обмен участками между разными молекулами ДНК или РНК называется рекомбинацией). Рекомбинация — важнейший источник наследственной изменчивости наряду с "обычными" мутациями. В опытах с колониями РНК рекомбинация происходит сама собой, бесконтрольно, но в живой клетке она находится под контролем разнообразных и сложных регуляторных систем.
Очень важно понять, что изменения наследственной информации нужны всему живому не только в геологическом масштабе времени, чтобы постепенно совершенствоваться в течение миллионов лет. Естественный отбор не может "заглянуть" так далеко, поэтому и специальные механизмы для достижения столь отдаленных целей не могут развиться. Но наследственные изменения нужны здесь и сейчас, они необходимы нам постоянно. Особенно наглядно это видно на примере простейших живых систем — вирусов. Многие ученые, правда, не считают их живыми организмами,
На примере вирусов хорошо видно, как они нарочно позволяют определенному количеству мутаций совершаться при каждой репликации. Таким способом они контролируют скорость мутирования и фактически превращают эволюцию в составную часть своего жизненного цикла, чуть ли не в основной компонент своего поведения.