Рождение сложности: Эволюционная биология сегодня
Шрифт:
Частота мутаций под контролем
Ярким примером того, как живые организмы регулируют скорость мутагенеза выгодным для себя образом, является имеющаяся у бактерий система "спасения утопающих" — SOS-response. Бактерия, как и любая живая клетка, не может "рассчитать", какое именно изменение генома ей в данный момент выгодно, и не может перекроить свои гены по заранее намеченному плану. Но иногда, когда условия жизни становятся невыносимыми, бывает выгодно увеличить частоту возникновения случайных мутаций во всем геноме или в отдельных его участках. И делать это бактерии умеют. Например, у кишечной палочки обнаружены так называемые SOS-гены, включающиеся в экстренных случаях. Один из них — ген dinB — кодирует склонную к ошибкам ДНК-полимеразу. В благоприятных условиях у бактерии включены гены обычных, редко ошибающихся ДНК-полимераз, и скорость мутирования остается низкой. Активизация гена dinB приводит к резкому увеличению частоты мутаций. В некоторых смертельно опасных ситуациях это может оказаться спасительным для гибнущей популяции микробов: вдруг какой-то из возникших мутантов окажется более жизнеспособным в данных условиях? Бактерии, таким образом, используют увеличение частоты мутирования как экстренную меру самосохранения. Молекулярные биологи уже научились ловко манипулировать этим свойством бактерий и активно используют его для создания различных экспериментальных генно-инженерных конструкций.
Бактерия Salmonella typhimurium
Недавно шведские ученые при помощи таких конструкций сумели доказать, что у бактерий имеются эффективные средства для уменьшения вреда, приносимого накапливающимися в геноме мутациями (Sophie Maisnier-Patin, John R. Roth, Asa Fredriksson, Thomas Nystrom, Otto G. Berg, Dan I Andersson. Genomic buffering mitigates the effects of deleterious mutations in bacteria // Nature Genetics. 2005. V. 37. №12. P. 1376-1379.). Исследователи задались вопросом: как меняется жизнеспособность организма в ходе накопления в геноме случайных мутаций? Для своего эксперимента ученые создали настоящее чудо генной инженерии — бактерию с регулируемой скоростью мутагенеза. Для этого они соединили ген dinB, кодирующий склонную к ошибкам ДНК-полимеразу, с промотором, который активируется сахаром арабинозой. Промотор — это регуляторный участок ДНК, который определяет, как и когда будет работать соседний с ним ген. Получившуюся конструкцию вставили в геном бактерии Salmonella typhimurium. Это дало возможность очень тонко регулировать скорость мутагенеза генно-модифицированной бактерии, просто меняя концентрацию арабинозы в среде.
Снижение жизнеспособности (вертикальная ось) по мере роста числа мутаций сначала идет быстро, а потом замедляется (черные точки). Наклонный пунктирный отрезок показывает, каким было бы снижение жизнеспособности без эффекта "взаимной нейтрализации»
Авторы показали, что мутации у модифицированной бактерии происходят более или менее случайным образом и распределяются равномерно по всему геному.
Жизнеспособность бактерий-мутантов оценивалась по скорости их размножения. Оказалось, что по мере накопления мутаций жизнеспособность сначала снижается быстро, но в дальнейшем, когда число мутаций переваливает за 3-5 десятков, снижение жизнеспособности резко замедляется.
Оказалось, что снижение вредоносности мутаций по мере роста их числа связано с деятельностью белков-шаперонов, обеспечивающих правильное сворачивание (укладку) белковых молекул. Повышение числа мутантных (и потому неправильно "свернутых") белков в клетке приводит к росту производства шаперонов, которым иногда удается помочь мутантному белку свернуться правильно. Таким образом, живая клетка в некоторых случаях способна не только регулировать скорость мутирования своего генома, но и эффективно справляться с вредоносным действием возникших мутаций.
Наличие подобных компенсаторных механизмов дает организмам возможность без чрезмерного ущерба для себя накапливать мутации, которые могут в дальнейшем "пригодиться" естественному отбору для создания новых форм жизни. Ведь любая мутация, вредная сегодня, может оказаться полезной завтра, когда условия переменятся.
Рост изменчивости в стрессовых условиях может происходить не только за счет увеличения частоты мутирования, но и из-за сбоев в работе "компенсирующих" механизмов — например, белков-шаперонов, которые до поры до времени "маскируют" значительную часть накопившихся мутаций, не дают им проявляться.
Конечно, склонные к ошибкам ДНК-полимеразы лишь увеличивают частоту мутаций, не влияя на их характер, который остается случайным. И тем не менее существование такого механизма заставляет признать, что для живых организмов мутагенез вовсе не является некой не зависящей от них внешней силой, слепым "давлением энтропии", как полагали биологи еще пару десятилетий назад. Ошибка, частота возникновения которой целенаправленно регулируется, — это уже как будто и не совсем ошибка, не правда ли?
Бывает и так, что разные участки генома мутируют с разной скоростью, причем у каждого участка эта скорость довольно постоянна. По-видимому, это означает, что одним генам организм "разрешает" мутировать чаще, чем другим.