Рождение сложности: Эволюционная биология сегодня
Шрифт:
Целенаправленное создание новых генов
В некоторых случаях сомневаться в способности клетки направлять мутационный процесс на нужные гены не приходится. Особенно ярко проявляется это в работе иммунной системы позвоночных. Биологов и медиков давно интересовал вопрос, каким образом удается белым кровяным клеткам — В-лимфоцитам — производить такое огромное разнообразие антител, используемых для борьбы с различными инфекциями.
Организм не может запастись заранее всеми необходимыми генами антител по двум причинам. Во-первых, такое количество генов не поместится ни в каком геноме: это привело бы к непомерному росту "расходов" на содержание в каждой клетке громадного количества ДНК. Во-вторых, как бы ни был велик запас защитных генов, в любой момент может появиться новая инфекция, для борьбы с которой не подойдет ни одно из имеющихся антител.
Сейчас Арала как единого водоема уже не существует: он разделился на два изолированных, быстро пересыхающих "озера" - Большой и Малый Арал.Резкое увеличение солености привело к вымиранию большей части животных и растений. В результате внезапной перемены условий уцелевшие виды начали быстро эволюционировать. У них резко возросла изменчивость и появились целый "букеты" новых форм. самое интересное. что все эти процессы протекали очень сходным образом в двух разобщенных водоемах - Большом и Малом Арале!
Плодовые тела, образуемые бактериями Myxococcus xanthus.
Инфузории (на фото — инфузория Oxytricha) — самые сложные из одноклеточных организмов, и вообще — верх того, что смогла создать эволюция на одноклеточном уровне. Строение инфузорий во многом напоминает многоклеточных, даром что клетка всего одна.
Реконструкция аномалокариса: сегментированное тело с "плавательными лопастями" напоминает некоторых кольчатых червей. Однако передние хватательные конечности и крупные глаза на стебельках — в точности как у членистоногих.
Мало кто из древних обитателей Земли может сравниться по своей популярности со знаменитым археоптериксом, восемь скелетов которого найдено в Германии в отложениях позднеюрского возраста. Это существо сочетает в себе признаки хищных динозавров-теропод и птиц.
Взрослые клопы Megacopta punctatissima и Megacopta cribraria, выросшие без симбионтов, отличаются мелкими размерами, бледной окраской и не могут размножаться.
Гусеницы бабочки Manduca sexta в норме имеют зеленую окраску. Ученым удалось вывести новую породу, меняющую цвет зависимости от температуры.
"Прыжки" транспозонов придают причудливую окраску кукурузным початкам.
Для кодирования
Это производство разделено на два этапа. Сначала, на ранних стадиях развития организма, гены антител формируются комбинаторным путем из унаследованного от родителей набора заготовок. Число наследуемых заготовок сравнительно невелико, но за счет комбинаторики из них можно собрать десятки и сотни тысяч разных генов. Специальные белки режут геномную ДНК и переставляют кусочки с место на место. Этот этап создания генов антител называется V(D)J-рекомбинацией, потому что каждый ген антитела собирается из заготовок двух (V и J) или трех (V, D, J) типов. Каждый В-лимфоцит продуцирует только один тип антител. На этом этапе неизбежно возникают "неудачные" лимфоциты, опасные для организма: они производят антитела, атакующие собственные антигены (молекулы) организма. Такие лимфоциты выбраковываются, остальные сохраняются и размножаются. Этот процесс называется клональной селекцией. В результате человек или животное получает большой набор В-лимфоцитов с антителами, способными атаковать почти любые молекулы, кроме тех, которые в норме присутствуют в данном организме.
Когда в организм попадает инфекция, гены антител подвергаются более тонкой "настройке". Те лимфоциты из имеющегося набора, чьи антитела проявляют наибольшее сродство к новому чужеродному антигену, начинают вносить случайные изменения в гены своих антител, точнее, в определенные участки этих генов — так называемые вариабельные области, или V-области. Именно эти участки гена отвечают за распознавание и связывание антигена (чужеродного белка или углевода).
Процесс внесения множественных изменений (мутаций) в гены защитных белков в клетках иммунной системы называется соматическим гипермутированием. На основе получающихся новых вариантов генов синтезируются антитела и проверяются на эффективность, то есть на степень сродства к новому антигену. Это продолжается до тех пор, пока не будет найден высокоэффективный вариант гена, обеспечивающий надежную защиту от нового возбудителя. Лимфоциты, производящие такое антитело, начинают усиленно размножаться. Так формируется приобретенный иммунитет. После выздоровления некоторые лимфоциты могут долго сохраняться в качестве клеток "иммунной памяти", что снижает риск повторного заболевания.
Таким образом, у клетки есть возможность вполне целенаправленно изменять свой собственный геном. Конечно, сделать процесс создания нужного гена по-настоящему разумным клеткам так и не удалось. Они не могут исследовать новый вирус и рассчитать, какое именно антитело в данном случае требуется. Им приходится действовать "методом оптимизированного случайного поиска". Оптимизированного — потому что имеются хорошие заготовки и клетки знают, в какие участки этих заготовок следует вносить случайные изменения. И это уже немало!