Рождение сложности: Эволюционная биология сегодня
Шрифт:
Целенаправленное, сконцентрированное на строго определенных генах мутирование вовсе не является уникальной чертой лимфоцитов позвоночных животных. Многие бактерии, как выяснилось, проделывают примерно то же самое с генами своих поверхностных белков — тех самых, к которым иммунная система создает антитела. Бактерии делают это, чтобы обмануть иммунную систему, и едва ли стоит удивляться, что два старинных врага сражаются друг с другом одним и тем же оружием.
Контролируемая
Один из самых поразительных примеров целенаправленной перестройки генома демонстрируют инфузории. Это самые сложные из одноклеточных организмов и вообще верх того, что смогла создать эволюция на одноклеточном уровне. Строение инфузорий во многом напоминает многоклеточных, даром что клетка всего одна. Например, у многоклеточных животных различают линию генеративных клеток, геном которых обычно оберегается от всяческих изменений — ведь именно этот геном передается по наследству потомкам. Кроме того, имеется и линия соматических клеток, геном которых может меняться по мере надобности. У инфузорий тоже есть два генома — генеративный и вегетативный (соматический). Генеративный, передающийся по наследству, геном хранится в маленьком ядре (микронуклеусе), содержит кучу мобильных элементов и некодирующих участков и в целом находится в нерабочем состоянии, если не сказать — в полном хаосе. Например, многие гены в нем разорваны на куски и перемешаны. Но тем не менее это нормальный, хотя и сильно запущенный большой эукариотический геном. Кстати, число генов у инфузорий и у человека примерно одинаковое — порядка 30 тысяч. Геном микронуклеуса (МИК-геном), естественно, не работает, да он и не смог бы! Он служит только для передачи генов потомству при половом размножении.
Вегетативный — соматический — рабочий геном инфузории хранится в большом ядре, так называемом макронуклеусе. Он по многим параметрам сильно отличается от других эукариотических геномов. Он состоит из множества, иногда из многих тысяч отдельных "нанохромосом". Это настоящие хромосомы, только очень маленькие, обычно содержащие всего один ген. Для каждой нанохромосомы, или МАК-хромосомы, в макронуклеусе имеется очень большое число копий. Соответственно, весь МАК-геном оказывается многократно сдублирован, то есть макронуклеус является полиплоидным, тогда как микронуклеус представляет собой диплоидное ядро.
У инфузории окситрихи (Oxytricba) МАК-геном по размеру в целых 20 раз меньше МИК-генома (50 млн и 1 млрд пар нуклеотидов соответственно; для сравнения, у человека — 3,5 млрд, у бактерий — обычно до 10 млн). Такое радикальное сокращение МАК-генома при его изготовлении из МИК-генома достигается за счет выбрасывания всего "лишнего".
Инфузории размножаются делением, при этом делятся оба ядра. Время от времени инфузории соединяются попарно, чтобы обменяться наследственным материалом. Этот процесс называется конъюгацией и рассматривается как особая разновидность полового процесса. Во время конъюгации микронуклеус претерпевает мейоз, то есть такое деление, в ходе которого число хромосом в поделившемся микронуклеусе сокращается вдвое. Вместо одного диплоидного микронуклеуса у каждой инфузории получается по два гаплоидных (на самом деле по четыре, но два из них тут же разрушаются). Каждая инфузория передает один из двух гаплоидных микронкулеусов своей подруге, а второй оставляет себе. Микронуклеусы затем сливаются. В результате каждая инфузория снова имеет один диплоидный микронуклеус, в котором половина хромосом — ее собственная, а половина получена от партнера. Затем инфузории разъединяются и продолжают жить как жили с той небольшой разницей, что с точки зрения генетики каждая из них теперь превратилась в свою собственную дочь.
Во время конъюгации или сразу после нее макронуклеус вместе со своим геномом разрушается, а затем собирается заново. За основу берется генеративный геном микронуклеуса, но он при этом подвергается радикальной перестройке. 95% МИК-генома просто удаляется. "На выброс" идут практически все мобильные элементы и некодирующие последовательности. Остаются чистые гены, почти без примесей. Но реорганизация генома не сводится к удалению не нужных здесь и сейчас участков генома. Происходит также "распутывание" — сборка работоспособных генов из разрозненных и перепутанных обрывков. Как мы помним, многие гены в МИК-геноме разорваны на мелкие кусочки и перемешаны. В промежутках между этими кусочками могут находиться длинные некодирующие вставки.
Например, в МИК-геноме ген может иметь такую структуру: 2X7X5X4X8X1X3X6 (цифрами обозначены "рабочие" фрагменты гена, буквой X — ненужные вставки различной длины). В МАК-геноме этот ген будет выглядеть так: 12345678.
Откуда клетка знает, в каком порядке нужно соединять обрывки? Ответ на этот вопрос был получен лишь в конце 2007 года.
Исследователи из Принстонского университета установили, что для "распутывания" генетической информации инфузории используют образцы (матрицы), представляющие собой молекулы РНК, считанные с нанохромосом макронуклеуса (МАК-хромосом) перед тем, как макронуклеус был разрушен. Чтобы это выяснить, пришлось провести множество сложных экспериментов (Mariusz Nowacki, Vikram VIijayan, Yi Zhou, Klaas Schotanus, Thomas G. Doak, Laura F. Landweber. RNA-mediated epigenetic programming of a genome-rearrangement pathway // Nature. 2008. V. 451. P. 153-158.).