Сахаровский сборник
Шрифт:
В результате такого развития науки возникает весьма своеобразная картина. С одной стороны, формулируются весьма общие принципы, управляющие колоссальным множеством физических явлений. С другой стороны, возникают фундаментальные проблемы, решение которых в значительной степени меняет картину науки. Как правило, такие проблемы возникают там, где фундаментальные принципы вступают в противоречие друг с другом.
В физике частиц наиболее общие принципы имеют форму законов сохранения тех или иных физических величин. Решение некоторых весьма трудных задач иногда состоит в отказе от абсолютно точного выполнения закона сохранения.
В основе современной космологии лежит общая теория относительности Эйнштейна, то есть теория гравитационного поля. Структура гравитационного поля выражается в терминах геометрии четырехмерного пространства — времени или, как говорят, Мира. Такой геометрический подход отражает весьма глубокие свойства гравитационного поля. Хорошо известно, что все тела в поле тяжести Земли движутся по одинаковым траекториям, независимо
Весьма примечательной особенностью современной картины мира является то, что проблема микромира (теории элементарных частиц) и проблема космологии (теории Мира как целого) пересекаются друг с другом. Как раз в моменты сразу за "Большим взрывом" физические процессы, управляющие эволюцией вселенной, существенно определяются законами, установленными в физике элементарных частиц. На стыке этих двух полюсов науки возникают исключительно интересные научные проблемы и результаты.
Некоторые из этих проблем интересовали Андрея Дмитриевича Сахарова. Решая их, Андрей Дмитриевич старался опираться на самые общие принципы в данной области науки. Такой метод чрезвычайно труден, но зато результаты являются несравненно более важными. Подход Андрея Дмитриевича Сахарова весьма физичен. Андрей Дмитриевич всегда пытается увязать между собой несколько разнообразных (иногда, казалось бы, далеких) физических аспектов рассматриваемого круга явлений и получать максимальное число результатов, проверяемых на опыте.
2. Барионная асимметрия Вселенной. Барионы образуют большое семейство "элементарных частиц, обладающих некоторым характеристическим свойством — наличием барионного заряда". Наиболее известными представителями барионов являются протон и нейтрон, из которых строятся все атомные ядра. Протону и нейтрону приписываются значения барионного заряда равные единице. При взаимодействии барионы могут превращаться друг в друга, однако эти превращения ограничены тем условием, что барионный заряд начальных продуктов реакции равняется барионному заряду конечных продуктов. Это условие можно сформулировать как закон сохранения барионного заряда. До сих пор ни в одном эксперименте не было наблюдено нарушение этого закона. Для каждого бариона существует свой антибарион. Антибарион также принадлежит барионному семейству. Свойства антибариона аналогичны свойствам бариона, но в то же время в некотором смысле им противоположны. Барионный заряд антибариона противоположен по знаку барионному заряду соответствующего бариона.
Следует особо подчеркнуть, что нет какого-либо внутреннего свойства, позволяющего отличить частицу от античастицы. Отношение частица — античастица взаимно. Так, например, протон и антипротон являются античастицами друг относительно друга. Если бы все частицы мира заменить на античастицы, то возникший в результате мир мало бы отличался от того, в котором мы живем. Иными словами, антимир, состоящий из "антивещества", был бы устроен точно так же, как и наш мир, построенный из "вещества".
Однако если частица взаимодействует с античастицей (например, реакция протон-антипротон, хорошо изученная в лабораторных условиях), то возникает совершенно другая картина. Поскольку барионные заряды этих двух частиц противоположны по знаку, и, следовательно, суммарный барионный заряд равен нулю, нет никаких причин, запрещающих превращению пары барион-антибарион в легкие частицы — электроны, нейтрино и кванты света. Как говорят, происходит аннигиляция, в результате которой пара барион-антибарион исчезает. Если бы в нашем мире существовали тела, построенные из антивещества, то при соприкосновении с телами из вещества происходила бы их аннигиляция с выделением большого количества энергии. Никаких астрономических указаний на существование подобных явлений обнаружено не было. Таким образом, опытом с большой точностью установлено, что в нашей Вселенной нет скоплений антивещества. Конечно, всегда можно возразить, что антивещество сосредоточено где-то в отдаленных уголках Вселенной и пространственно разделено с веществом. Однако даже если это и так в современную эпоху, то в эпоху сразу после "Большого взрыва", когда материя была в сверхплотном состоянии, такое разделение вещества и антивещества весьма трудно себе представить. Остается предположить, что во Вселенной нет островов антивещества или, иначе говоря, барионный заряд Вселенной отличен от нуля. В этом состоит барионная асимметрия Вселенной: несмотря на то, что законы физики допускают замену вещества на антивещество, Вселенная состоит из частиц с барионным зарядом одного знака. Проблема барионной асимметрии Вселенной ставит вопрос: как это могло произойти в процессе эволюции? Как мы видим, в этой проблеме скрещиваются фундаментальные законы физики. С одной стороны, закон сохранения барионного заряда, с другой — представления Общей теории относительности, из которой следует модель расширяющейся Вселенной, возникшей в результате "Большого взрыва". Конечно, один из возможных ответов состоит в том, что "так было всегда", что уже сверхплотная материя во времена "Большого взрыва" имела в точности такой же барионный заряд, какой имеет Вселенная в нашу эпоху. Однако такой ответ является пустым.
Значительно более интересной является гипотеза о том, что начальное состояние Вселенной имело барионный заряд равный нулю, а имеющаяся сейчас барионная асимметрия возникла в результате некоторых физических процессов в ходе эволюции Вселенной. С этой точки зрения рассматриваются различные аспекты барионной асимметрии Вселенной в работах А.Д. Сахарова (1,2,3,4). Андрей Дмитриевич исследует две различные гипотезы. Первая (3) состоит в том, что барионный заряд в природе строго сохраняется, однако в результате нестационарных процессов в сверхплотном веществе, возникшем в "Большом взрыве", возможно разделение барионного заряда, при котором положительный заряд сосредоточен в нуклонах, а равный ему отрицательный заряд — в некоторых гипотетических частицах, нейтральных антикварках (с барионным зарядом — 1/3). Эти антикварки по предположению не захватываются ядрами. Все окружающее пространство заполнено антикварками. Их средняя плотность втрое больше средней плотности нуклонов (суммарный барионный заряд нуклонов и антикварков равен нулю). Легко сформулировать свойства антикварков, которые не приводят к противоречию с имеющимися данными. В работе обсуждаются возможные эксперименты по наблюдению антикварков. Такие эксперименты являются наиболее прямой проверкой гипотезы.
Вторая гипотеза, рассмотренная в работах (1,4), существенно отличается от предыдущей. Предполагается, что закон сохранения барионного заряда выполняется лишь приближенно. Вводится конкретная модель взаимодействия, не сохраняющего барионный заряд. Это взаимодействие приводит к распаду протона в легкие частицы (в конкретном варианте в -мезоны). В работе показано, что при нестационарном процессе расширения сверхплотной материи введенный механизм может дать наблюдаемое значение барионной асимметрии. В современную эпоху видимые эффекты нового взаимодействия весьма малы. Например, хотя это взаимодействие приводит к распаду протона, тем самым делая протон нестабильным, однако время жизни протона оказывается столь большим, что наблюдение распада протона в эксперименте находится далеко за пределами современных возможностей. В последующей работе (2) Андрей Дмитриевич развивает свою гипотезу, увязывая ее с эффектом несохранения CP-четности — весьма важным явлением, экспериментально обнаруженным при распаде долгоживущих ki-мезонов.
Проблема барионной асимметрии Вселенной сейчас является одной из центральных проблем, объединяющей две важнейшие области физики — теорию элементарных частиц и космологию.
3. Космологические модели. Закон всемирного тяготения, утверждающий, что все тела в мире притягиваются друг к другу, — один из наиболее универсальных законов природы. Тот факт, что в малых масштабах свойства системы определяются не гравитационными взаимодействиями, объясняется тем, что это взаимодействие (в известном смысле) весьма слабое. Так, например, электростатическое взаимодействие между протоном и электроном в атоме водорода на много порядков сильнее их гравитационного взаимодействия. Однако ни одно взаимодействие в мире, помимо гравитационного, не носит характера всеобщего притяжения. Поэтому, когда мы переходим от рассмотрения явлений малых масштабов ко все более крупным масштабам, относительная роль гравитации возрастает. Если же рассматривать весь мир как физическую систему, то для такой системы роль гравитации становится доминирующей, а все остальные взаимодействия отходят на задний план. Можно сказать, что гравитация полностью определяет структуру мира как целого.
Общая теория относительности Эйнштейна выражает гравитационное поле в терминах геометрии четырехмерного Мира. Эта геометрия такова, что для небольших пространственно-временных областей она может весьма мало отличаться от геометрии Евклида. Однако все пространство в целом отличается кардинальным образом от Евклидового пространства. Таким образом, космологическая модель, описывающая строение всей Вселенной, по существу сводится к рассмотрению неевклидового пространства, обладающего определенными свойствами. Через геометрические характеристики этого пространства выражаются физические свойства Мира как целого.
Наиболее широко используется в настоящее время в исследованиях по космологии модель расширяющейся Вселенной Фридмана. В этой модели существует особая точка — "Большой взрыв". Эта точка соответствует моменту времени t=0. При значениях t < 0 (в рамках этой модели) пространства не существует.
В работе (5) Андрей Дмитриевич выдвигает идею космологических моделей, для которых тоже существует особая точка при t = 0, аналогичная "Большому взрыву", но в отличие от модели Фридмана возможно определить физические величины и для значений t < 0. Такие модели А.Д. Сахаров назвал космологическими моделями с поворотом стрелы времени.