Самые знаменитые головоломки мира
Шрифт:
Хоббс и Ноббс работали все время с постоянной скоростью, пока не обработали все поле, причем каждый из них и сажал картошку, и засыпал ее землей. Зная, что на поле сделано 12 борозд, как показано на рисунке, скажите, каким образом следует разделить 5 долларов, чтобы каждый получил свою долю пропорционально проделанной им работе?
24
Эта головоломка наглядно показывает, как просто надуть человека, приобретающего
Если сторона квадрата содержит 24 дюйма, то площадь самого квадрата должна равняться 24 х 24 = 576 квадратным дюймам. Обратите внимание на диагональ, которая идет из одного угла в другой. Разрезав квадрат вдоль этой диагонали и передвинув верхнюю часть на одно деление вверх вдоль разреза, мы получим маленький треугольник А, который высунется справа. Если мы отрежем его и поместим в положение В в левом верхнем углу, то получим прямоугольник шириной в 23 и высотой в 25 дюймов. Но 23, умноженное на 25, даст только 575 квадратных дюймов. Куда же исчез квадратный дюйм?
Говорят, что последний том «Начал» Евклида был целиком посвящен геометрическим заблуждениям такого рода; другими словами – задачам и головоломкам, содержащим умно спрятанные ошибки. К несчастью, этот том утерян, но, без сомнений, это была величайшая из написанных автором книг.
25
Поэт Г. Лонгфелло был прекрасным математиком и не раз отмечал, сколь плодотворное воздействие на фантазию студента оказывают привлекательные одежды, в которые, не в пример сухому языку учебников, можно облечь математические задачи.
Задача о водяной лилии – одна из задач, которые Лонгфелло ввел в свой роман «Каванаг». Она столь проста, что по силам всякому даже не очень сведущему в математике человеку, но столь ярко иллюстрирует важный геометрический факт, что он становится памятен уже навсегда. Я не помню, как дословно сформулировал эту задачу в нашей беседе Лонгфелло, но суть ее сводилась к следующему. Лилия, на одну пядь поднимавшаяся над поверхностью воды, под порывом свежего ветра коснулась поверхности озера в двух локтях от прежнего места; исходя из этого, требовалось определить глубину озера.
Предположим, что, как это показано на рисунке, лилия на 10 дюймов поднимается над поверхностью воды, а если ее потянуть в сторону, то она исчезнет под водой в точке, отстоящей на 21 дюйм от того места, где она находилась первоначально. Чему равна глубина озера?
26
Отдыхающим летом на побережье в Джерси знакомы развалины старой башни Бэкон, служившей некогда маяком. Вы видите здесь реконструкцию этой башни, сделанную на основе старинного рисунка полувековой давности, который сохранился у одного местного жителя (ему самому пошел уже девяносто шестой год). Он помнит, как строилась эта башня, когда он был мальчиком. Все графство было взбудоражено этим событием, и вряд ли кто из окрестных жителей сомневался в том, что библейская Вавилонская башня была не выше ее.
Теперь от башни Бэкон ничего не осталось, кроме обгорелого столба примерно шестидесяти футов высотой, ступеньки разрушились при пожаре около двадцати лет назад. Но рисунок, равно как и хроники графства,
Тогда это была весьма внушительная высота. Ведь более века мерилом недосягаемой высоты был шпиль у Тринити Черч. Но времена изменились, и совсем недавно почтенный служащий церкви Тринити жаловался, что ребята из соседнего дома норовят бросать вниз на церковный шпиль камешки.
Основу башни Бэкон составляли массивные столбы, искусно соединенные в одну колонну, которую спиралью обвивала винтовая лестница с железными перилами. Лестница делала вокруг колонны ровно четыре оборота, как показано на рисунке. На каждой ступеньке имелся поддерживавший перила стержень. Поскольку эти стержни отстояли друг от друга ровно на 1 фут, то нетрудно было подсчитать, сколько ступенек придется преодолеть на пути к вершине башни. И все же, как сказал капитан Хафф, владелец рисунка, поведавший нам историю башни:
– Я не встречал ни одного горожанина, который смог бы правильно подсчитать число ступенек.
Итак, башня от земли до верхней площадки, образовывавшей последнюю ступеньку, имела 300 футов. Лестница обвивалась вокруг башни четыре раза, а поддерживавшие перила стержни имелись на каждой ступеньке и отстояли друг от друга ровно на 1 фут. К этому мы должны добавить, что диаметр всей башни (то есть диаметр воображаемого цилиндра, на котором располагались перила) равнялся 23 футам 10 1/ 2дюйма. [5] Сколько ступенек было у винтовой лестницы?
5
В 1 футе содержится 12 дюймов. – Прим. перев.
27
Некий фермер вместе со своей славной женой приехал на рынок, дабы обменять домашнюю птицу на скот из расчета по 85 цыплят за лошадь и корову. Известно, что 5 лошадей стоят ровно столько же, сколько и 12 коров.
– Джон, – сказала жена, – давай возьмем еще столько же лошадей, сколько мы уже выбрали. Тогда зимой нам придется кормить только 17 лошадей и коров.
– Я думаю, нам стоит взять побольше коров, – ответил супруг. – И знаешь, я обнаружил, что если мы удвоим число коров, которых уже купили, то всего у нас окажется 19 коров и лошадей, а цыплят как раз хватит, чтобы совершить эту сделку.
Эта бесхитростная деревенская пара ничего не смыслила в алгебре, и все же им было точно известно, сколько у них цыплят и сколько им нужно приобрести коров и лошадей. Мы просим наших любителей головоломок определить, пользуясь приведенными здесь данными, сколько цыплят привезли фермер и его жена на рынок?
28
Вот одна любопытная головоломка, примечательная не только общим принципом, лежащим в ее основе, но также и тем, что она достаточно древняя и связана с некой забавной историей. Некогда город Кенигсберг, [6] разделенный рекой Прегель на четыре части, включая остров Кнайпхоф, имел восемь мостов. Вот с этими-то мостами и связана старая головоломка, озадачивавшая его славных жителей более двух веков назад.
6
Ныне Калининград. – Прим. перев.