Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого
Шрифт:
Граница между фотобиосферой и меланобиосферой на суше почти совпадает с дневной поверхностью: свет проникает в глубь почвы лишь на несколько миллиметров. В водной среде положение границы определяется прозрачностью воды. Толщина зоны фотосинтеза изменяется от нескольких сантиметров в быстротекущих реках, несущих значительное количество ила, до первой сотни метров (максимально до 180 м) на удаленных от суши участках океана. В соответствии с этим мощность фотобиосферы колеблется от нескольких миллиметров до первой сотни метров (на суше — вверх от дневной поверхности: вековые леса, в океане — вниз от поверхности моря: зона фотосинтеза). Мощность меланобиосферы на 1—2 порядка больше: в океанах — это вся водная толща ниже зоны фотобиосферы и заселенный слой донных осадков, на континентах — слой биосферы от дневной поверхности до нижней границы распространения активной бактериальной
Коренное отличие фотобиосферы от меланобиосферы состоит в структуре их живого вещества: в первом случае оно представлено фотоавтотрофами и гетеротрофами, во втором — фотоавтотрофы отсутствуют (однако в некоторых случаях их заменяют хемоавтотрофы). Впрочем, и среди гетеротрофов в меланобиосфере живут лишь виды, приспособившиеся к отсутствию света. Что касается человека, то он, расселяясь в пещерах, начал осваивать меланобиосферу много тысячелетий назад. Затем, переселившись в более уютную фотобиосферу, он начал углубляться в меланобиосферу своими рудниками. А сейчас многие из нас, пользуясь городским метрополитеном, ежедневно совершают «суточные миграции» в меланобиосферу.
Фотобиосферу и меланобиосферу можно разбить по вертикали и на более дробные зоны. Так, советский исследователь Юрий Петрович Бяллович ввел понятие биогеоценотического горизонта, или биогеогоризонта, определив его следующим образом: «Биогеоценотический горизонт есть вертикально обособленная и по вертикали далее нерасчленимая структурная часть биогеоценоза. Сверху донизу биогеоценотический горизонт однороден по составу биогеоценотических компонентов, по взаимосвязям их, по происходящим в нем превращениям вещества и энергии, и в этих же отношениях он отличается от соседних биогеоценотических горизонтов, служащих ему кровлей и постелью». Первопричиной деления биосферы на биогеогоризонты, по Бялловичу, является радиальное направление гравитации, солнечной радиации и земного излучения. В экосистемах всех рангов можно проследить не только эти элементарные, далее нерасчленимые, биогеогоризонты, но и слои более высоких рангов, которые целесообразно называть экогоризонтами [41] . Экогоризонтами высшего — глобального — ранга и являются фотобиосфера и меланобиосфера. Выделяемые В. И. Вернадским пленки жизни можно рассматривать как частный случай экогоризонтов.
41
См.: Лапо А. В. Биосфера Земли, ее границы и экогоризонты. — В кн.: Седикахиты на разных стадиях литогенеза. М., Наука, 1982. с. 43—49.
Итак, по горизонтали биосфера делится на экосистемы, по вертикали — на экогоризонты. Действие закона всемирного тяготения приводит к тому, что взаимозависимость между двумя соседними экогоризонтами обычно больше, чем между соседними экосистемами.
Все экосистемы биосферы Земли по ландшафтному принципу можно разделить на три основные группы: а) морские экосистемы; б) экосистемы суши; в) экосистемы континентальных водоемов. Только морские экосистемы объединены в единую грандиозную экосистему — Мировой океан. Другие типы экосистем имеют дисперсное распространение: экосистемы наземных водоемов окружены сушей, а суша, в свою очередь, океаном. В современную эпоху они занимают следующие площади: Мировой океан — 361,2 млн. км^2, суша — 145,7 млн. км^2, континентальные водоемы — лишь 3,2 млн. км^2. Рассмотрим, как распределено живое вещество в этих основных типах экосистем биосферы и какие следы оставляют они в геологических отложениях.
«Биогенные соли в глубине и наличие света у поверхности» — так в афористической форме выразил советский океанолог Ю. Ю. Марти основную проблему морских экосистем. Мировой океан включает в себя водную толщу (океанологи ее называют пелагиалью) и дно (бенталь). Пелагиаль в пределах фотобиосферы в океанологии называют эвфотической зоной; нижняя часть пелагиали именуется афотической зоной. По существу, это три самостоятельных экогоризонта океана (сверху вниз: эвфотическая зона, афотическая зона и бенталь), каждый из которых характеризуется своим специфическим живым веществом и условиями среды. В некоторых полузамкнутых бассейнах с затрудненной циркуляцией вод (типа Черного моря) обнаруживается другой своеобразный слабо заселенный экогоризонт — зона сероводородного заражения, где прозябают только несколько видов анаэробных бактерий.
В. И. Вернадский выделил в океане две жизненные пленки (планктонную и донную).
Рис. 2. Экогоризонты, концентрации и разрежения жизни Мирового океана: I — планктонная пленка жизни; II — донная пленка жизни; III — сгущения жизни; 1 — прибрежное; 2 — саргассовое; 3 — рифовое; 4 — апвеллинговое; 5 — абиссальное рифтовое; IV — подъем глубинных вод; А — разрежение жизни
Планктонная пленка жизни В. И. Вернадского в основном соответствует эвфотической зоне океана. По составу живого вещества она резко отличается от наземных экосистем: доминируют здесь организмы, взвешенные в воде и неспособные противостоять течениям (сообщество этих организмов и есть планктон — от греческого корня «планктос» — парящий, блуждающий). Совокупность фотоавтотрофных планктонных организмов называют фитопланктоном, гетеротрофных — зоопланктоном. Специфичность планктона как особого сообщества водных организмов впервые была показана знаменитым немецким биологом Иоганном Петером Мюллером (1801—1858).
До последнего времени считалось, что по первичной продукции лидером среди организмов планктона являются одноклеточные водоросли (главным образом диатомовые, измеряемые десятками и сотнями микронов), однако недавние исследования показали, что от 30 до 80% первичной продукции океана дают значительно более мелкие (0,4—1 мкм) фотосинтезирующие организмы, которые раньше ускользали от внимания исследователей из-за ничтожности своих размеров и несовершенства лабораторного оборудования. Эти организмы назвали пикопланктоном (от исп. «pico» — малая величина). Первыми идентифицированными представителями пикопланктона оказались цианобактерии. Результаты совместного советско-французского исследования, проведенного в 1983 г., позволили выявить в составе пикопланктона и эукариоты, но определить их пока не удалось. Оказалось, что максимум распределения пикопланктона приурочен к акваториям тропических и субтропических морей. А поскольку в его составе преобладают цианобактерии, не приходится удивляться, что пикопланктон весьма нетребователен к содержанию азота в воде — ведь цианобактерии могут поглощать его и из воздуха! И еще одна специфическая особенность: вклад пикопланктона в первичную продукцию возрастает с глубиной, поскольку организмы пикопланктона, по-видимому, способны осуществлять фотосинтез при очень низкой интенсивности солнечного света [42] .
42
См.: Крупаткина Д. К., Берлан Б., Маэстрини С. Лидер первичной продукции — океан, а не суша. — Природа, 1985, №4, с. 56—62.
Состав зоопланктона очень разнообразен. Самыми распространенными и важными в экологическом отношении в составе зоопланктона являются копеподы (веслоногие рачки), обычный размер которых — всего 2—3 мм, а максимальная величина — до 10 мм. По биомассе им уступают эвфаузииды — несколько более крупные рачки размером до 5 см, очень похожие на креветок. Обычно они образуют огромные скопления в океане, которые рыбаки называют крилем. Криль — «дежурное» блюдо китов (индивидуальная суточная норма — 1,5 т). К зоопланктону относятся также медузы, сальпы, некоторые моллюски, простейшие, а также многие другие организмы (зачастую только в виде икры, личинок или молоди).
Плотность населения в планктонной пленке такова, что девять десятых живых организмов, будь то растения или животные, поедаются раньше, чем наступает их естественная смерть: рачки-копеподы питаются диатомовыми водорослями, копепод пожирают более крупные рачки, и т. д. Количество живых организмов в планктонной пленке быстро убывает с глубиной. По данным одной из экспедиций 30-х годов, содержание живых организмов в 1 л морской воды оказалось следующим: в поверхностном слое — 10 147 особей, на глубине 50 м — 9443, 100 м — 2749. Мощность планктонной пленки как своеобразной концентрации жизни Вернадский оценивал в 50—60 м.