Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого
Шрифт:
Когда бог Ану сотворил небо, небо — землю, земля реки, реки — канавы, канавы — слизь, а слизь — червя, то червь при взгляде на солнце заплакал, и слезы его предстали перед лицом богини Эи. «Что назначаешь ты мне в пищу и питье?» — спросил червь. — «Я дам тебе в пищу гнилую древесину и плоды дерева».
Именно так — если верить вавилонской клинописи — появились на Земле сапротрофы. Они не только предохраняют биосферу от самоотравления (многие продукты распада отмершего органического вещества чрезвычайно ядовиты), но, расщепляя органику, возвращают углерод и азот в минеральную форму — ведь только в такой форме эти элементы могут потребляться автотрофами. Характерно, что если некротрофы для нормального своего развития нуждаются в смешанной пище, состоящей из разнообразных веществ (белков, жиров, сахаров или крахмала), то сапротрофы при наличии источника азота и зольных элементов могут довольствоваться каким-нибудь одним органическим веществом, например белком или сахаром. Бактерии и грибы запросто разлагают биогенные органические вещества как растительного, так и животного происхождения. Больше того — им «по зубам» и
Сочетание автотрофов и сапротрофов представляет собой простейшую экосистему. Недавно попытались экспериментально выяснить, насколько устойчивы такие экосистемы. Для этого 36 различных вариантов сочетаний автотрофов (микроскопические водоросли) и сапротрофов (грибы и бактерии) были запаяны в стеклянные пробирки и помещены в условия постоянного освещения. Эксперимент продолжался 3 года. За это время неспособными к самоподдержанию оказались 20 экспериментальных экосистем. Остальные 16 прекрасно развивались, причем биомасса автотрофов составляла в них от 90 до 99% (сапротрофов соответственно от 1 до 10%). В выживших экосистемах сапротрофное звено на 90% состояло из какого-нибудь одного преобладающего вида, которым в большинстве случаев оказались бактерии из группы псевдомонад.
Известный советский физиолог, академик Александр Михайлович Уголев недавно сформулировал задачи новой науки — трофологии. По его определению, «предмет трофологии — закономерности ассимиляции (т. е. поглощения и усвоения веществ, необходимых для жизни) на всех уровнях организации биологических систем — от клеточного, органного и организменного до популяционного и планетарного». Согласно основной концепции трофологии каждый вид живых организмов биосферы, с одной стороны, использует определенные источники питания, а с другой — сам служит пищевым объектом других видов. Таким образом, устанавливается парадоксальный вывод, что существует взаимная адаптация так называемых трофологических партнеров. Фигурально выражаясь, жертва не должна слишком быстро убегать от своего хищника, а хищник не должен чрезмерно легко ее нагонять. Только в этом случае хищники будут питаться преимущественно больными, дефектными и стареющими членами популяции, и ее численность как источника питания будет поддерживаться на определенном уровне. При таком подходе концепция межвидовой конкуренции, господствовавшая в прошлом веке, сменяется концепцией взаимной приспособляемости видов.
Мы рассмотрели деление живого вещества по способам питания организмов. Однако возможно разделение живого вещества на две категории — соматическое и репродуктивное — по совершенно другому принципу (известно, что соматическими в биологии называют клетки, выполняющие любые функции, кроме размножения). Масса репродуктивного живого вещества незначительна по отношению к соматическому, но именно репродуктивное живое вещество определяет непрерывность развития жизни на нашей планете. Биосферная же роль соматического живого вещества — транспортировка репродуктивного живого вещества во все уголки Земли, обеспечивающая «всюдность жизни».
«Кто есть кто» в биосфере? Попытаемся совместить два подхода к живому веществу: функциональный и биологический (систематический).
Жизнь в биосфере существует во внеклеточной и клеточной формах. Внеклеточную форму живого вещества представляют вирусы, открытые в 1892 г. русским ученым Дмитрием Иосифовичем Ивановским (1864—1920) — сверстником и товарищем В. И. Вернадского по Петербургскому университету.
Вирусы настолько своеобразны и ни на что не похожи, что один из ведущих вирусологов современности — иностранный член АМН СССР Андрэ Львов — сформулировал следующее их исчерпывающее определение: «Вирус есть вирус».
В отличие от клеточных организмов вирусы лишены раздражимости и собственного аппарата синтеза белка. Они неспособны к самостоятельному существованию и развиваются только в клетках других живых организмов (естественно, клеточных): бактерий, растений, животных, включая человека. По существу, вирусы представляют собой лишь подсистему в целостной системе вирус — клетка, причем метаболические функции в масштабе этой системы целиком лежат на клетке. В соответствии с этим вирус как таковой никогда не имеет прямых трофических связей с окружающей его средой: он не питается в обычном понимании этого слова и не растет.
Казалось бы, вирусы — примитивнейшие существа, но генетический их аппарат поразительно разнообразен. По этому кардинальному признаку различия между вирусами полиомиелита, например, и оспы гораздо существеннее, чем между бактерией и человеком. Огромный мир внеклеточной жизни… Образовался он, по единодушному мнению ученых, путем своеобразного вырождения клеточных организмов.
Вирусы — бич всего живого. Поселяясь в живых клетках, они вызывают заболевание и — нередко — смерть организма-хозяина. На «совести» вирусов больше половины человеческих болезней: грипп, корь, свинка, ветряная оспа, краснуха; в их числе и самые страшные: рак, бешенство, инфекционный гепатит, клещевой энцефалит. Считается, что при средней продолжительности жизни 70 лет человек в среднем 7 лет болеет вирусными заболеваниями.
Борьба человечества с вирусами осложняется чрезвычайно мелкими их размерами (в среднем вирусы в 100 раз мельче бактерий и различимы только в электронный микроскоп) и необычайной устойчивостью к условиям внешней среды. Некоторые вирусы выдерживают получасовое кипячение и кратковременную обработку обычными дезинфицирующими средствами,
Как и все другие организмы, вирусы выполняют в биосфере свою особую функцию. Вызывая тяжелые заболевания живых организмов, вирусы элиминируют наиболее слабые особи и способствуют выживанию наиболее приспособленных. Естественный отбор в биосфере осуществляется в значительной мере вирусами.
Перейдем к рассмотрению клеточных форм жизни. Сейчас существует несколько систем их классификации. Мы будем пользоваться главным образом макросистемой академика А. Л. Тахтаджяна [37] , но с некоторыми уточнениями, обусловленными новейшими исследованиями (табл. 2).
Таблица 2
Макросистема клеточных живых организмов [38] и их роль в биосфере
Макросистема живых организмов [39] | Роль живых организмов в биосфере | ||||||
---|---|---|---|---|---|---|---|
Надцарства | Царства | Подцарства | Автотрофы | Гетеротрофы | Миксотрофы | ||
Фототрофы | Хемотрофы | Биотрофы | Сапротрофы и некротрофы | ||||
Доядерные (прокариоты) | Дробянки | Бактерии (эубактерии) | + | + | + | + | + |
Архебактерии | + | + | – | + | + | ||
Цианеи (цианобактерии, или синезеленые водоросли) | + | + | – | – | + | ||
Ядерные (эукариоты) | Растения | Низшие растения (водоросли) | + | – | – | – | + |
Высшие растения | + | – | Очень редко | ? | + | ||
Грибы | Миксомицеты (слизевики) | – | – | + | + | – | |
Грибы (высшие грибы) | – | – | + | + | – | ||
Животные | Простейшие | – | – | + | Очень редко | + | |
Многоклеточные животные | – | – | + | + | + |
37
См.: Тахтаджян А. Л. Система органического мира. — БСЭ, 3 изд., т. 23, 1976, с. 1386—1391.
38
Без учета симбиотрофных организмов.
39
По А. Л. Тахтаджяну (1976) с дополнениями по В. И. Дуда (1984) и другим авторам.
По этой системе выделяются два надцарства клеточных организмов — прокариоты и эукариоты, основное различие между которыми — отсутствие у прокариотов клеточного ядра (их иначе называют доядерными). У прокариотов отсутствует также дифференциация соматического и репродуктивного живого вещества.
Рассмотрение прокариотов начнем с бактерий. Открыты они были в 1683 г. великим изобретателем микроскопа Антони ван Левенгуком (1632—1723). Полвека спустя в своей «Системе природы» (1735) Карл Линней все открытые к тому времени бактерии (а заодно и все другие микроорганизмы) объединил в «хаос», который угодно было сотворить богу и назначение которого человеку непонятно. У наших современников упоминания о бактериях обычно связаны с самыми неприятными ассоциациями: жар, озноб, болотная лихорадка… Между тем вызывают заболевания у человека только 0,1% из всех живущих на Земле бактерий (причем человек значительно эффективнее справляется с ними, чем с вирусными). И, как справедливо заметил уже знакомый нам Андрэ Львов, мы не должны сердиться на бактерии, так как если бы не было микробов, то не было бы жизни на Земле и не было бы… микробиологов. В этой шутке нет преувеличения — бактерии выполняют в биосфере необходимейшие функции. Человек начал использовать широчайшие возможности бактерий, даже не подозревая об их существовании — еще за несколько тысяч лет до нашей эры появились производства, основанные на жизнедеятельности бактерий: виноделие, пивоварение, хлебопечение, сыроварение. Понадобился долгий и трудный путь познания, завершившийся гениальными открытиями Луи Пастера, чтобы понять роль бактерий в этих привычных для человечества производствах.