Чтение онлайн

на главную

Жанры

Шрифт:

F (Xfo Х%, • • • > #n) === 21 ^SiS2 ... {%1 #i) ^

SA...Sn n

X (хг — 4)Ss ...(xn — 4)®*,

сходящийся при достаточно малых значениях \xi—Xi 1, j = 1, 2, ..., п.

Теорема Коши — Ковалевской в настоящее время формулируется следующим образом [140].

Дана система уравнений

д %ui

п, === Fi (t, Х\, * * • у хП1 Uiy ••• у Un у.. • dt 1

\ (1>

диз ...I

dt1''" х^1 . . . дх^п J

(h ] = I» 2,..., N’ ко -|- ki 4- • • • + кп = к^ ге*, ко ^

имеющая нормальную форму. Это значит, что среди прощн

водных по t наивысшего порядка щ от каждой функции ии

72

входящих в систему, должна содержаться производная dntUi/dtnti причем система разрешена относительно этих производных.

Пусть теперь при t=t° заданы начальные значения неизвестных функций щ и их производных по t до порядка

П\ 1 :

|(&=0 соответствует сама функция щ).

При этом все функции <p.W заданы в одной и той же области G(xu ..., хп).

Задачей Коши называется нахождение решения системы (1) при начальных условиях (2). Если все функции Fi аналитичны в некоторой окрестности точки (t°, Xi°,

cp^ № '"к )и все функцииФ^}аналитичны в окрестности точки (t°, xt°,..., хп°), то задача Коши имеет аналитическое решение в некоторой окрестности точки (?°, ...,#п°), и притом единственное в классе аналитических функций. Здесь

При доказательстве Ковалевская пользовалась мажорантными функциями по Вейерштрассу:

а не по Коши:

Доказательство Ковалевской проще доказательства Коши, и, по словам Пуанкаре, она дала теореме ее окончательную форму. Теперь эта теорема входит в основные курсы анализа [141, с. 380]. Особенно же существенно в работе Ковалевской то, что она установила важное значение приведения системы к нормальному виду. Это выясняется на примере, данном Ковалевской, простейшего уравнения (уравнения теплопроводности), для которого задача Коши, если это уравнение написано не в нормальной форме, нё имеет голоморфного решения,— это было значительное

(? = 0, i,...,ni — 1)

(2)

atkodxkl , . . дх*пп ,=(0

73

открытие для того времени. (Бейерштрасс писал, что первоначально Ковалевская показала это для более сложного уравнения.)

Пример Ковалевской. Найти решение уравнения

0ф 02ф

’ dt дх2 5

удовлетворяющее условию ф(я, i) =1/(1—х) при ?=0. Нетрудно видеть, что если есть аналитическое решение, то оно должно представляться рядом по степеням U

со

(2tt)l

п\

tn

(1 _ (Г)2П-Ы

который, однако, расходится при всех t?=0. Следовательно, аналитического решения такого рода не существует.

О. А. Олейник в своем докладе «Теорема С. В. Ковалевской и ее роль в современной теории уравнений с частными Производными», сделанном й Институте проблем механики АН СССР в 1975 г. в связи с 125-летием со дня рождения С. В. Ковалевской, сказала, что теорема Ковалевской находит важные и существенные применения в исследованиях по теории уравнений с частными производными, выполненных вплоть до самого последнего времени, и тонкие современные исследования все в большей степени выявляют ее глубокий и завершенный характер.

Многих занимал вопрос о степени самостоятельности Софьи Ковалевской при разработке темы, поставленной Вейерштрассом. По этому поводу Бейерштрасс пишет Дюбуа-Реймону 25 сентября 1874 г.: «В диссертации, о которой идет речь, я — не считая того, что поправил многочисленные грамматические ошибки,—не принимал другого участия, кроме того, что поставил задачу перед автором. И в этом отношении я тоже должен заметить, что я, собственно, не ожидал другого результата по сравнению с известным из теории обыкновенных дифференциальных уравнений. Я был, чтобы оставаться при простейшем случае, того мнения, что степенной ряд от многих переменных, удовлетворяющий формально уравнению в частных производных, должен также быть всегда сходящимся внутри некоторой области и должен, следовательно, представлять тогда функцию, действительно удовлетворяющую дифференциальному уравнению. Что это не так, как Вы видите из рассмотренного в диссертации примера уравнения d<p/dt=d2y/dx2i было открыто, к моему большому изумле-

74

дню, моей ученицей совершенно самостоятельно, — и притом сначала для гораздо более сложных дифференциальных уравнений, чем приведенное,— так что она даже сомневалась в возможности получения общего результата; кажущиеся такими простыми средства, которые она нашла для преодоления возникшего таким образом затруднения, я высоко оценил как доказательство ее правильного математического чутья» [142, с. 204].

Вторая работа, представленная Ковалевской для присуждения степени доктора философии, относится к вопросу о форме кольца Сатурна. Это «Дополнения и замечания к исследованию Лапласа о форме кольца Сатурна» [5]* Она посвящена следующей задаче.

Заполненное однородной массой кольцо, происходящее от вращения эллипса вокруг прямой, не пересекающей его, но лежащей в его плоскости и параллельной одной из его главных осей, вращается с постоянной угловой скоростью вокруг этой прямой; Поверхность кольца покрыта бесконечно тонким слоем однородной жидкости, которая притягивается кольцом и, кроме того, центральным телом, центр тяжести которого совпадает с центром кольца. Спрашивается, могут ли быть определены элементы кольца (полуоси эллипса и расстояние его центра до оси вращения) и его угловая скорость так, чтобы жидкость сохраняла положение равновесия относительно поверхности кольца* Для это-* го необходимо и достаточно, чтобы удовлетворялось уравнение

где п — угловая скорость вращения, V — потенциал кольца в некоторой точке его поверхности, pi — расстояние этой точки до оси вращения, zt — ее расстояние до экваториальной плоскости, М — масса центрального тела, которая принимается сосредоточенной в его центре тяжести, С — постоянная.

Лаплас исследовал эту задачу в предположении, что расстояние центра производящего эллипса от оси вращения очень велико по сравнению с полуосями эллипса [143], что дало ему возможность заменить кольцо эллиптическим цилиндром.

Поделиться:
Популярные книги

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Кодекс Крови. Книга IV

Борзых М.
4. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IV

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Антимаг его величества. Том III

Петров Максим Николаевич
3. Модификант
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Антимаг его величества. Том III

Последний Паладин. Том 6

Саваровский Роман
6. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 6

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII