Спонтанная эволюция: Позитивное будущее и как туда добраться
Шрифт:
Ньютонова материалистическая, редукционистская и детерминистская наука предложила не только схему анализа Вселенной, но и утопию полного контроля над ней. Цена? Она невелика: мыслящим людям следует отказаться от своего увлечения Богом, духом и незримыми силами.
Где-то в промежутке между временем жизни Ньютона (начало 1700-х годов) и наступлением эпохи Просвещения (конец 1700-х) произошло ослабление напряженности между укрепляющей свои позиции новой научной парадигмой и все еще сохраняющей доминирующее положение в обществе монотеистической парадигмой церкви. Произошел взаимовыгодный раздел Вселенной на материальную и духовную сферы — наука взяла на себя заботу о физическом мире, а за религией остался мир метафизический.
Таким
К концу XIX века вся материальная Вселенная комфортно покоилась на фундаменте ньютоновой истины. Считалось, что наука доказала: Вселенная представляет собой физическую машину, состоящую из мельчайших частиц-атомов; вселенскую динамику можно понять и просчитать, изучая взаимодействия атомов, подобные взаимодействию шаров на бильярдном столе. Фактически в конце XIX века физики были крайне довольны собой — они даже публично заявляли, что физическая наука пришла к завершению и изучать им больше нечего.
Ирландский инженер и специалист по математической физике Уильям Томпсон (известный как лорд Кельвин), выступая в 1900 году перед физиками на форуме Британской ассоциации по распространению научных знаний, сказал следующее: «В физике открывать уже нечего. Остается только производить все более точные измерения». Подобное же утверждение приписывают и Альберту Майкельсону, первому американскому физику, получившему Нобелевскую премию. Ньютонова наука казалась настолько завершенной, что в бытность свою руководителем кафедры физики в Чикагском университете Майкельсон шутливо замечал: университету больше не нужно готовить физиков, поскольку «все фундаментальные принципы уже точно установлены… и теперь новых откровений в физике можно ожидать разве что где-нибудь в районе шестого знака после запятой».
Однако на пути к абсолютной определенности произошла забавная штука. В очередной раз подтверждая, что гордыня — предвестник падения, ученые начали наблюдать в своих лабораториях неожиданные явления, переворачивающие мир ньютоновой физики с ног на голову. Первая трещинка в механистическом мировоззрении появилась в 1895 году, когда немецкий физик Вильгельм Конрад Рентген поведал миру об обнаруженных и исследованных им «лучах икс» — загадочной силе, которая излучается материей и способна проходить сквозь нее. Затем французский физик Антуан Анри Беккерель, а вслед за ним Мария и Пьер Кюри открыли и описали явление радиоактивности, обнаружив заодно, что атомы отнюдь не являются неизменяемыми структурными частицами материи, как это считалось прежде, но вполне могут превращаться в атомы других элементов.
Два года спустя британский физик сэр Джозеф Томпсон открыл электрон, тем самым продемонстрировав, что атом не является мельчайшей частицей во Вселенной, как это утверждала ньютонова физика, но состоит из еще меньших частиц.
Изучая спектральный состав света, излучаемого нагретыми телами, немецкий физик Макс Планк обнаружил, что электроны в атоме способны перескакивать с одного энергетического уровня на другой, не демонстрируя промежуточных энергетических состояний. На «основании этих наблюдений Планк пришел к выводу, что электроны состоят из стандартных порций (или пакетов) лучистой энергии, и назвал эти «порции» квантами. В ходе дальнейших исследований ученый выяснил, что, перескакивая с одного энергетического уровня на другой, электроны либо приобретают, либо теряют целое число квантов энергии. Так было положено начало новому направлению в науке — квантовой физике.
В 1905 году в ходе исследований фотоэлектрического эффекта немецкий физик Альберт Эйнштейн обнаружил, что нематериальные световые волны в определенных условиях демонстрируют физические свойства, которые прежде приписывались лишь материи. Основываясь на своих наблюдениях, Эйнштейн постулировал существование фотонов — квантов лучистой световой энергии, проявляющих в определенных условиях свойства частиц. Когда выяснилось, что материя ведет себя как свет, а свет — как материя, строгая ранее структура ньютоновой физики вдруг стала выглядеть какой-то расплывчатой.
В 1926 году французский физик Луи Виктор де Бройль предсказал, что любые частицы материи должны в определенных условиях вести себя как нематериальные волны. Эта гипотеза была подтверждена три года спустя в ходе исследования электронов. Эксперименты продемонстрировали, что электроны действительно обладают как свойствами частиц, так и свойствами волн; иными словами, они одновременно материальны и нематериальны.
Благодаря этим открытиям, сделанным всего лишь четверть века спустя после высказываний Томпсона и Майкельсона о том, что физика как наука закончилась, прочные основы ньютоновой механики внезапно растворились в парадоксах, воистину достойных дзэнских коанов.
Вся эта корпускулярно-волновая [32] путаница была в конце концов разрешена благодаря созданию и развитию квантовой механики. Идея корпускулярно-волнового дуализма — визитная карточка квантовой физики — стала целостной теоретической основой для объяснения того факта, что вся материя обладает качествами, свойственными как частицам, так и волнам. Добро пожаловать в причудливый квантовый мир!
Знаменитое уравнение Эйнштейна, отображающее взаимосвязь между массой и энергией (Е=mc2), подтверждает единство энергии и материи. Здесь мы видим, что энергия (Е) равняется массе (m), помноженной на квадрат скорости света. Тем самым Эйнштейн фактически продемонстрировал, что атомы состоят не из материи, а из нематериальной энергии! Сегодня точно установлено, что физические атомы состоят из целого сонма субатомных элементов, таких как кварки, бозоны и фермионы. Любопытно, что физики-атомщики представляют себе эти фундаментальные субатомные элементы как энергетические вихри — своего рода наносмерчи.
32
Корпускула — очень малая частица вещества. — Прим. перев.
Иными словами, бытовавшая в течение долгого времени ньютонова модель, согласно которой Вселенная видится как скопление сугубо физических объектов, на поверку оказалась всего лишь тщательно проработанной иллюзией! С другой стороны, теория Эйнштейна, представляющая собой попытку объяснить природу и поведение всей материи и энергии, предполагает, что Вселенная является неким незримым динамическим целым, в рамках которого все физические частицы и энергетические поля взаимосвязаны и взаимозависимы.
Помимо того что квантовая механика несколько ослабила приверженность науки к материализму, работы Планка также поставили под вопрос универсальную применимость частный случай описываемых ею процессов. Таким образом, квантовая механика объясняет все то же самое, что уже было известно прежде, плюс еще целый мир ранее не известных сил, которые управляют процессами в нашей Вселенной.
Квантовая механика учит, что материальная Вселенная — со всеми ее атомами, частицами и материей — на самом деле является неотъемлемой составляющей незримой вселенской матрицы из энергий, которые все вместе составляют некое единое поле.