Чтение онлайн

на главную

Жанры

Шрифт:

F

=2(d/dtx)( 1/2 L)=Ld/dtx

(3)

Подставляя это выражение для F в (2), получим

d/dtx=- 1/2 curl curl

D

.

(4)

Теперь рассмотрим криволинейный интеграл от F по замкнутой плоской кривой C (рис. 3). Трубки, перпендикулярные к плоскости рисунка, показаны в сечении кривыми стрелками для обозначения направления циркуляции, причём за положительное направление принято направление против часовой

стрелки. Из предыдущих рассуждений ясно, что если некомпенсированная кривизна такова, что трубка 1 дрейфует в C, то трубка 2 имея противоположную циркуляцию, будет дрейфовать из C. Подъёмная сила на каждую трубку направлена вдоль -F, а тяга на жидкость направлена вдоль F.

Рис. 3. Трубки, дрейфующие через кривую С.

Из рис. 3 ясно, что если F должно сохранять преобладающее направление против часовой стрелки, то трубки с положительной циркуляцией будут дрейфовать внутрь C, а трубки с отрицательной циркуляцией будут покидать C, увеличивая таким образом результирующую положительных трубок. Следовательно, криволинейный интеграл F вокруг C связан со скоростью изменения результирующей циркуляции вокруг C. На рис. 3 элемент длины дуги dr обозначен через F и представлена плоскость (плоскость рисунка), по отношению к которой дрейфующие трубки имеют нормальные составляющие. Число положительных трубок, пересекающих dr влево в единицу времени, в dr cos раз больше числа положительных трубок на единицу площади. Число отрицательных трубок, покидающих C, такое же самое. Отрицательная трубка, покидающая C, есть та же самая в отношении циркуляции C, что и положительная входящая трубка. Компоненты трубки в плоскости рисунка не вносят никакой доли в циркуляцию C. Каждая трубка внутри C вносит 2 единиц циркуляции в C, а так как плотность разлагаемых трубок в направлении, нормальном к рисунку, есть 1/2 L то скорость изменения циркуляции вокруг C равна

/C (circ C) =

2( 1/2 L)(dr cos ).

На основании (3), учитывая, что d/dt нормально к , можно записать

F

d

r

=Ldr cos ,

так что

/t(circ C) = 1/

F

d

r

.

По мере того как размеры контура C становятся малыми (однако недостаточно малыми, для того чтобы были различимы индивидуальные трубки), эти члены, разделённые на площадь, охватываемую C, приближаются к компоненту, нормальному плоскости рисунка

/t(curl

q

)=1/ curl

F

,

(5)

где q — макроскопическая скорость среды (в отличие от микроскопической скорости жидкости).

Теперь напишем q в виде dD/dt перегруппируем члены в (5). Принимая во внимание (2), получаем

curl

F

= curl ^2

D

/t^2,

F

=-G curl curl

D

.

(6)

За исключением некоторых деталей, относящихся к дрейфу, эти уравнения

представляют расчленённую форму (1). Теперь определим два новых вектора для того, чтобы ввести дрейф явным образом (выбор символов предусматривает возможность аналогии с электромагнитными полями, как это следует из дальнейшего); пусть из уравнения (3)

E

=t=k

1

(Ld/dtx

)=k

1

F

и B=k2 curl D, где k1 и k2 — произвольные постоянные. Теперь уравнения (6) принимают вид

curl

E

/t = -(k

1

/k

1

)^2

B

/t^2,

curl

B

= (k

2

/k

1

G)

E

/t.

Если предположить, что установившиеся поля отсутствуют, то интегрирование по времени первого из этих уравнений и приравнивание к нулю даёт аналог вихревых уравнений Максвелла для свободного пространства

curl

E

= -(k

1

/k

2

)

B

/dt,

curl

B

= (k

2

/k

1

G)

E

/dt

(7)

Так как k2 и k1 произвольны, то можно выбрать k2=k1 итогда получим

curl

E

= -

B

/dt,

curl

B

= (1/c^2)

E

/dt

(8)

где c^2=G/ — квадрат волновой скорости.

Из этого факта, что B есть вихрь вектора, получаем

div

B

= 0.

(8a)

На основании (4) получаем div dE/dt=0 или div E не зависит от времени. Так как мы предположили, установившиеся поля отсутствуют, то для рассматриваемых частных случаев должно быть

div

E

=0.

(9)

Если выбрать k1 безразмерным, то dE/dt будет иметь размерность силы на единицу объёма, а E — размерность импульса на единицу объёма. Так как curl D безразмерен, то B имеет размерности k2 которые при специальном выборе, сделанном для получения уравнения (8), представляют размерность массовой плотности. Волновая скорость должна быть независимой от выбора k1 и k1 — факт, который подтверждается уравнениями (7).

Поделиться:
Популярные книги

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Без Чести

Щукин Иван
4. Жизни Архимага
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Без Чести

Безродный

Коган Мстислав Константинович
1. Игра не для слабых
Фантастика:
боевая фантастика
альтернативная история
6.67
рейтинг книги
Безродный

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Ваше Сиятельство 4т

Моури Эрли
4. Ваше Сиятельство
Любовные романы:
эро литература
5.00
рейтинг книги
Ваше Сиятельство 4т

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Девятое правило дворянина

Герда Александр
9. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Девятое правило дворянина

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

Скрываясь в тени

Мазуров Дмитрий
2. Теневой путь
Фантастика:
боевая фантастика
7.84
рейтинг книги
Скрываясь в тени

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии