Чтение онлайн

на главную - закладки

Жанры

Шрифт:

F

=2(d/dtx)( 1/2 L)=Ld/dtx

(3)

Подставляя это выражение для F в (2), получим

d/dtx=- 1/2 curl curl

D

.

(4)

Теперь рассмотрим криволинейный интеграл от F по замкнутой плоской кривой C (рис. 3). Трубки, перпендикулярные к плоскости рисунка, показаны в сечении кривыми стрелками для обозначения направления циркуляции, причём за положительное направление принято направление против часовой

стрелки. Из предыдущих рассуждений ясно, что если некомпенсированная кривизна такова, что трубка 1 дрейфует в C, то трубка 2 имея противоположную циркуляцию, будет дрейфовать из C. Подъёмная сила на каждую трубку направлена вдоль -F, а тяга на жидкость направлена вдоль F.

Рис. 3. Трубки, дрейфующие через кривую С.

Из рис. 3 ясно, что если F должно сохранять преобладающее направление против часовой стрелки, то трубки с положительной циркуляцией будут дрейфовать внутрь C, а трубки с отрицательной циркуляцией будут покидать C, увеличивая таким образом результирующую положительных трубок. Следовательно, криволинейный интеграл F вокруг C связан со скоростью изменения результирующей циркуляции вокруг C. На рис. 3 элемент длины дуги dr обозначен через F и представлена плоскость (плоскость рисунка), по отношению к которой дрейфующие трубки имеют нормальные составляющие. Число положительных трубок, пересекающих dr влево в единицу времени, в dr cos раз больше числа положительных трубок на единицу площади. Число отрицательных трубок, покидающих C, такое же самое. Отрицательная трубка, покидающая C, есть та же самая в отношении циркуляции C, что и положительная входящая трубка. Компоненты трубки в плоскости рисунка не вносят никакой доли в циркуляцию C. Каждая трубка внутри C вносит 2 единиц циркуляции в C, а так как плотность разлагаемых трубок в направлении, нормальном к рисунку, есть 1/2 L то скорость изменения циркуляции вокруг C равна

/C (circ C) =

2( 1/2 L)(dr cos ).

На основании (3), учитывая, что d/dt нормально к , можно записать

F

d

r

=Ldr cos ,

так что

/t(circ C) = 1/

F

d

r

.

По мере того как размеры контура C становятся малыми (однако недостаточно малыми, для того чтобы были различимы индивидуальные трубки), эти члены, разделённые на площадь, охватываемую C, приближаются к компоненту, нормальному плоскости рисунка

/t(curl

q

)=1/ curl

F

,

(5)

где q — макроскопическая скорость среды (в отличие от микроскопической скорости жидкости).

Теперь напишем q в виде dD/dt перегруппируем члены в (5). Принимая во внимание (2), получаем

curl

F

= curl ^2

D

/t^2,

F

=-G curl curl

D

.

(6)

За исключением некоторых деталей, относящихся к дрейфу, эти уравнения

представляют расчленённую форму (1). Теперь определим два новых вектора для того, чтобы ввести дрейф явным образом (выбор символов предусматривает возможность аналогии с электромагнитными полями, как это следует из дальнейшего); пусть из уравнения (3)

E

=t=k

1

(Ld/dtx

)=k

1

F

и B=k2 curl D, где k1 и k2 — произвольные постоянные. Теперь уравнения (6) принимают вид

curl

E

/t = -(k

1

/k

1

)^2

B

/t^2,

curl

B

= (k

2

/k

1

G)

E

/t.

Если предположить, что установившиеся поля отсутствуют, то интегрирование по времени первого из этих уравнений и приравнивание к нулю даёт аналог вихревых уравнений Максвелла для свободного пространства

curl

E

= -(k

1

/k

2

)

B

/dt,

curl

B

= (k

2

/k

1

G)

E

/dt

(7)

Так как k2 и k1 произвольны, то можно выбрать k2=k1 итогда получим

curl

E

= -

B

/dt,

curl

B

= (1/c^2)

E

/dt

(8)

где c^2=G/ — квадрат волновой скорости.

Из этого факта, что B есть вихрь вектора, получаем

div

B

= 0.

(8a)

На основании (4) получаем div dE/dt=0 или div E не зависит от времени. Так как мы предположили, установившиеся поля отсутствуют, то для рассматриваемых частных случаев должно быть

div

E

=0.

(9)

Если выбрать k1 безразмерным, то dE/dt будет иметь размерность силы на единицу объёма, а E — размерность импульса на единицу объёма. Так как curl D безразмерен, то B имеет размерности k2 которые при специальном выборе, сделанном для получения уравнения (8), представляют размерность массовой плотности. Волновая скорость должна быть независимой от выбора k1 и k1 — факт, который подтверждается уравнениями (7).

Поделиться:
Популярные книги

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Ученик. Книга третья

Первухин Андрей Евгеньевич
3. Ученик
Фантастика:
фэнтези
7.64
рейтинг книги
Ученик. Книга третья

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Хозяйка собственного поместья

Шнейдер Наталья
1. Хозяйка
Фантастика:
фэнтези
5.00
рейтинг книги
Хозяйка собственного поместья

Неудержимый. Книга XX

Боярский Андрей
20. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XX

Законы Рода. Том 12

Flow Ascold
12. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 12

Новый Рал 10

Северный Лис
10. Рал!
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Новый Рал 10

Как сбежать от дракона и открыть свое дело

Ардин Ева
Фантастика:
юмористическая фантастика
5.83
рейтинг книги
Как сбежать от дракона и открыть свое дело

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Комендант некромантской общаги 2

Леденцовская Анна
2. Мир
Фантастика:
юмористическая фантастика
7.77
рейтинг книги
Комендант некромантской общаги 2

Начальник милиции. Книга 3

Дамиров Рафаэль
3. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 3

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6