Статьи и речи
Шрифт:
В. Томсон стремился преодолеть затруднение, суть которого в том, что в эфире распространяются поперечные колебания и, следовательно, проявляются свойства твёрдых тел, но одновременно он не оказывает никакого сопротивления движущимся сквозь него телам. В. Томсон (Кельвин) утверждал, что эфир нельзя себе представлять сплошным. Эфир охвачен по всему объёму сильными вихрями; он весь состоит из вращающихся масс, оси вращения которых находятся в хаотическом движении. Вращающиеся массы в силу свойств вихрей легко сдвигаемы друг относительно друга, в то же время невозможно повернуть отдельные ячейки около любой оси. Гиростатическая модель эфира, в конечном счёте исходит не из континуальных свойств, а из атомистических. В. Томсон выдвигал немало интересных модификаций эфира, но они не достигли цели. В 1910 г. Планк писал: «Чтобы постигнуть строение эфира,
Он внёс существенный вклад в обоснование максвелловой электродинамики и в выяснение её принципиальных теоретических основ. Он показал, что если французские учёные, начиная с Лапласа и кончая Коши, исходили из точно высказанных гипотез и следствия из этих гипотез, выведенных с математической строгостью, сравнивали с опытом, то метод Максвелла был иным. Максвелл, в отличие от многих физиков конца XVIII — начала XIX в. не давал механического объяснения электричества и магнетизма, он лишь доказывал возможность такого объяснения, и естественно, что уравнения Максвелла можно было идентифицировать с самой теорией. Из непосредственного опыта можно получить некоторое число параметров (q1, q2, … qn) и их измерить. Наблюдение даёт нам законы изменения этих параметров. Законы эти можно представить в форме дифференциальных уравнений, связывающих параметры между собой и со временем.
Для механического истолкования явления его надо, отмечает Пуанкаре, объяснить при помощи движения обычной материи или гипотетических частиц. Уравнения движения частиц m1, m2, … mp имеют вид:
m
i
d^2xi
dt^2
= -
U
dxi
,
m
i
d^2yi
dt^2
= -
U
dyi
,
m
i
d^2zi
dt^2
= -
U
dzi
(1)
где (-U) — силовая функция от 3 p координат.
«Мы будем иметь полное механическое объяснение явлениям, если будем, с одной стороны, знать силовую функцию (-U) и, с другой стороны, сумеем выразить 3 p координат xi, yi, zi через n параметров»58a
Заменив координаты их выражениями через параметры, мы переходим к законам движения в форме Лагранжа
d
dt
T
qk
–
T
qk
+
U
qk
=0.
(2)
«Итак,— пишет Пуанкаре,— для того чтобы механическое объяснение явления было возможным, нужно, чтобы оказалось возможным найти две функции U и T, зависящие: первая — только от параметров q, вторая — от этих параметров и их производных; нужно, далее, чтобы T была однородной функцией второго порядка по отношению к этим производным и чтобы дифференциальным уравнениям, выведенным из опыта, могла быть придана форма (2). Справедливо и обратное предложение: всякий раз, когда можно найти эти две функции T и U, есть уверенность, что явленно поддаётся механическому объяснению»59. Далее Пуанкаре доказывает, что при наличии функций U(qk) и T(qk,qk)
Наряду с этим Пуанкаре глубоко оценил сложнейшие проблемы электростатики Максвелла, внося значительный вклад в обоснование ряда проблем её. Мы вкратце остановимся лишь на некоторых из них.
Глубокая связь электростатики и теории потенциала, возникшая после открытия закона Кулона, оказалась плодотворной для обеих сторон; электростатика получила математический аппарат и методы, сложившиеся в теории притяжения, а сама эта теория, благодаря специфике проблем электростатики, обогатилась новыми задачами, новыми методами. Можно без преувеличения сказать, что начиная с работ Пуассона и Грина и кончая работами Ляпунова и Стеклова, все важнейшие исследования по теории потенциала прямо или косвенно были связаны с задачами электростатики.
Уже первые электростатические опыты Кулона (1786) позволили принципиально правильно поставить первую краевую задачу для уравнения Лапласа и стимулировали исследования Пуассона по решению этой задачи для сферы. Теорема Пуассона о разрыве нормальной производной потенциала простого слоя (1811) также была предвосхищена опытами Кулона.
Исследования Грина, приведшие к его знаменитым формулам и к так называемому методу функций Грина, были предприняты в связи с решением чисто электростатической задачи об отыскании связи между «потенциальной функцией» объёмных зарядов и соответствующей ей плотностью распределения электричества на поверхности проводника.
Метод электрических изображений В. Томсона обязан своим происхождением поискам путей, направленных на преодоление трудностей, встретившихся при рассмотрении некоторых задач электростатики, относящихся к сферическим проводникам59b.
Исследования Гаусса, Томсона, Дирихле и Римана, связанные с проблемами существования и единственности, возникли вместе с постановкой краевых задач и, таким образом, их генетическая связь с электростатикой очевидна. Эти проблемы были в сфере интересов Максвелла. Последующее их развитие привело к замкнутости теории в целом.
Метод арифметических средних К. Неймана был первым общим методом решения краевых задач теории потенциала, применимым ко всем достаточно гладким выпуклым поверхностям; потребностями электростатики были вызваны и исследования Неймана, связанные с распространением метода арифметических средних на поверхности, обременённые плоскими частями, рёбрами и угловыми точками60. Примерно к тому же времени относятся и исследования Робэна о распределении электричества на проводниках, приведшие к так называемому методу Робэна. Значение методов Неймана и Робэна состоит в том, что они не только устанавливали существование решения краевых задач теории потенциала, но и давали конструкцию, алгоритм самих этих решений. Поэтому они оказались в центре внимания всех исследований по теории потенциала последней трети XIX в. Эти исследования предпринимались с целью распространения методов Неймана и Робэна на класс поверхностей, более широкий, чем выпуклые, ибо выпуклые поверхности не удовлетворяли требованиям математической общности и, главное, представляли собой класс поверхностей, слишком узкий с точки зрения приложений теории потенциала, в частности приложений к электростатике.
С именем Анри Пуанкаре связан важный этап истории теории потенциала, лежащий на стыке классического направления этой теории, идущего от Грина и Гаусса, и нового теоретико-множественного и теоретико-функционального направления в математике. Три больших мемуара Пуанкаре60a, появившиеся один вслед за другим на протяжении короткого отрезка времени, сыграли благодаря богатству содержащихся в них новых идей выдающуюся роль и оказали огромное влияние на дальнейшее развитие теории потенциала и математической физике в целом.