Тайная жизнь чисел. Любопытные разделы математики
Шрифт:
Предисловие
Математика — музыка разума.
Джеймс Джозеф Сильвестр
Сборники математических анекдотов пользуются определенной популярностью. Чем-то похожа на них и эта книга. Хотя истории, рассказанные в ней, не столь известны, с математической точки зрения они вызывают интерес. Математические анекдоты многим читателям кажутся не особенно смешными — гораздо чаще улыбку может вызвать многое из того, что математики говорят (и делают) с серьезным выражением лица. Порой математические истории вовсе не забавны: в прошлом веке нацистские, коммунистические и прочие тоталитарные режимы вынуждали ученых (просим у читателя извинений за излишний натурализм) вскрывать себе вены, но этот период истории вообще
С математиками связаны и некоторые поистине бессмертные истории: образ компьютерного гения Алана Тьюринга, который покончил с собой, откусив отравленное яблоко, словно Белоснежка, не вызывает улыбки. Вспоминается и печальная история женщины-математика Ады Лавлейс, которая умерла от рака, — мать прятала от нее морфий и считала, что дочь своими мучениями искупает земные грехи.
По сравнению с этими историями рассказ о борьбе Годфри Харолда Харди с Богом, бурным морем и гипотезой Римана кажется пустячным.
Во время работы над книгой мы следовали вдоль оси времени, то есть старались изложить истории в хронологическом порядке, от древних к современным. Чтобы структурировать материал, каждую главу мы посвятили конкретной теме. Так, в первой главе мы расскажем истории, связанные с простейшими математическими объектами — числами. Вторая глава посвящена геометрии, третья — историям о математическом анализе (эти разделы математики были наиболее популярны до начала XX века). В четвертой главе собраны занимательные случаи, связанные со всеми остальными математическими дисциплинами и теориями. В пятой и шестой главах мы обратимся к самим математикам, которые — быть может, к своему несчастью — относятся к совершенно особому виду людей. В последней главе изложены факты, не поддающиеся классификации: среди всего прочего, в ней мы расскажем о гороскопах, которые в разные годы привлекали внимание множества людей.
Историк Эрик Темпл Белл считал математику царицей всех наук. Те, кто занимается ею, — в некотором роде особые люди, ведь математика достаточно сложна и требует четкости мышления и порой значительных умственных усилий. Возможно, мир математики кому-то покажется очень скучным, однако скромная цель автора этой книги — посмотреть на знакомую всем историю науки немного под другим углом и, избегая излишней сухости и строгости, заглянуть на ее невидимую сторону.
Глава 1
Числа
Альберт! Перестань указывать Богу, что Ему делать!
Нильс Бор — Альберту Эйнштейну
Вначале были число и фигура. Когда человек попытался овладеть ими, родилась наука, и человек начал познавать окружающий мир. Развитие науки часто сопровождалось забавными, любопытными и даже анекдотичными случаями. Упомянуть их все или даже хотя бы самые известные из них — слишком обширная задача, так что мы остановились только на самых любопытных. Нашей единственной целью было показать читателю земную сторону математики, которую слишком часто считают наукой, недоступной простым смертным.
Паламед — персонаж древнегреческой мифологии, упоминаемый в легендах об Агамемноне и Ушссе — героях Троянской войны. Мы говорим о нем потому, что Платон иронично называет его создателем математики. По легенде, Паламед был создателем мер и весов, а также их концептуального выражения — числа. Он изобрел числа — что ни говори, не самое пустяковое открытие. Платон писал о предположительном существовании Паламеда с усмешкой: «Выходит, до того как Агамемнон поговорил с Паламедом, он не знал, сколько у него ног?» Непочтительный Платон был столь же острым на язык, как и его учитель, Сократ, которого даже приговорили к смерти за инакомыслие.
Древние греки считали, что если измерить величину а единицей измерения Ь, то дробь а/Ь будет мерой а. Иными словами, все, что можно измерить, имеет дробную меру, или, говоря современным языком, всякая мера эквивалентна рациональному числу и наоборот. К примеру, если отрезок имеет длину 70 см, а линейка — 20 см, то дробь 70/20 = 7/2 была мерой a, измеренной Ь. Так считали ученики пифагорейской школы. Но Гиппас из Метапонта (V век до н. э.) обнаружил, что измерить диагональ квадрата, выбрав в качестве меры его сторону, невозможно.
Подчеркиваем: не очень сложно, а именно невозможно.
Диагональ квадрата несоизмерима с его стороной.
Если d = a/b, то очевидно, что мы можем выбрать а и Ь так, что они будут взаимно простыми. Достаточно сократить дробь а/b. Теперь рассмотрим самый простой случай — квадрат с единичной стороной. Теорема Пифагора гласит, что d2 = 12 + 12 = 1 + 1 = 2, то есть (а/b)2 = 2, или, если вы предпочитаете иной способ записи, а2 = 2Ь2.
Рассмотрим а подробнее. Если а четное, то b обязательно должно быть нечетным, так как мы предположили, что а и b взаимно простые. Так как а = 2р, предыдущее равенство примет вид (2р)2 = 4р2 = 2b2, следовательно, 2р2 = Ь2, откуда следует, что b2 (а следовательно, и Ь) четное. Но это невозможно, так как мы уже показали, что b должно быть нечетным.
Теперь предположим, что а нечетное. Тогда нечетным будет и a2. Однако а2 = 2Ь2, и это означает, что а2 четное, что противоречит нашей предпосылке. Как видите, получается нечто немыслимое, и первым это доказал пифагореец Гиппас.
Как известно, лучшее, что можно сделать, получив дурную весть, — это убить гонца. Ямвлих Халкидский восемь веков спустя утверждал, что пифагорейцы построили склеп, где должен будет упокоиться тот, кто откроет несоизмеримые величины. Существует несколько версий гибели Гиппаса. В самой милосердной версии он даже не упоминается и говорится лишь о том, что пифагорейцы принесли в жертву сто быков — столь велико было удивление, которое вызывали несоизмеримые величины. Так как пифагорейцы были вегетарианцами, эта гекатомба (что по-гречески и означает «сто быков») кажется возможной, но не слишком вероятной. В другой версии легенды Гиппас всего лишь был изгнан из пифагорейской школы. И в самом жестоком варианте он был сброшен в море с борта корабля. Как бы то ни было, вера пифагорейцев в истинность своего учения оставалась непоколебимой. Лишь Евдокс Книдский, открыв вещественные числа, смог разрешить загадку несоизмеримых величин.