Чтение онлайн

на главную - закладки

Жанры

Тайная жизнь чисел. Любопытные разделы математики
Шрифт:

«Мой разум открыт» — говорил Пал Эрдёш друзьям, когда стучался в их двери, чтобы погостить у них. С собой ученый брал только чемодан и смену белья, поскольку все остальное — его ум и готовность решать самые запутанные задачи — были при нем всегда. После этой фразы часто звучало и другое его изречение: «Another roof, another proof» («Еще одна крыша, еще одно доказательство»).

Подсказка от Эрдёша

Все,

что не было связано с математикой, вызывало у Эрдёша просто мучительную скуку. Как-то раз его пригласили на ужин, и когда ученый убедился, что гости действительно собрались ужинать, а не говорить о математике, то уткнулся носом в тарелку и заснул. Существует еще одна история, рассказанная польско-американским математиком Марком Кацом (1914–1984). Один из семинаров Каца был посвящен теме, не слишком интересной Эрдёшу, и тот благополучно задремал. Однако в какой-то момент Кац зашел в тупик, не в силах решить задачу о делителях числа, и ровно в этот же момент Эрдёш проснулся, словно хищник, почуявший добычу, и тут же погрузился в задачу. Кац еще не закончил говорить, как Эрдёш триумфально вскинул голову: задача была решена.

Числа господина Смита

Эта история началась благодаря Альберту Вилански, который описал новый класс чисел, взяв за основу телефон своего зятя — по крайней мере, именно так изложены события в книгах по теории чисел. У зятя Вилански, некого Гарольда Смита, был номер телефона 4937775. Сумма его цифр равна 42:

4 + 9 + 3 + 7 + 7 + 7 + 5 = 42.

Затем Вилански разложил номер телефона на простые множители:

4937 775 = 3·52·65 837

и записал его без показателей степени, точно так же, как это делают школьники:

4937 775 = 3·5·5·65 837.

Сюрприз! Сумма всех цифр этих чисел вновь равнялась 42:

3 + 5 + 5 + 6 + 5 + 8 + 3 + 7 = 42.

Другой не обратил бы на это внимания, но Вилански испытал настоящее озарение. Так появились числа Смита. Число Смита (мы приведем его определение в десятичной системе счисления, но его можно определить и в любой другой) — это составное число, для которого при разложении на множители и записи в указанном виде сумма цифр исходного числа и сумма цифр его простых сомножителей равны. Изучение чисел Смита оказалось довольно плодотворным, и сегодня этим занимаются сотни и тысячи математиков. Известно, что чисел Смита бесконечно много (недаром это весьма распространенная фамилия в англоязычных странах), бесконечное множество из них является палиндромами, и даже известно одно любопытное число Смита

9·101031(104594 + 3·102297 + 1)1476·103913210,

где R1031 (R означает «репьюнит» от английского «повторяющаяся единица») обозначает целое число, записанное как 1031 единица подряд, или, что аналогично

R1031 = (101031 – 9)/9

На 2010 год это число было наибольшим из известных чисел Смита. Самым примечательным в этом классе является «число зверя» 666, упоминаемое в Откровении Иоанна Богослова:

С другой стороны,

6 + 6 + 6 = 18.

666 = 2·3·3·37;

2 + 3 + 3 + 3 + 7 = 18.

Трепещите, каббалисты и приспешники темных сил! Жаль, что числа Смита имеют столь прозаическое название и обязаны своим появлением на свет телефонному номеру.

Муха

Американский физик и математик венгерского происхождения Джон фон Нейман (1903–1957) благодаря некоторым чертам своего характера также стал героем множества анекдотов. В одном из самых популярных рассказывается о его впечатляющих способностях к вычислениям и любопытной привычке действовать не так, как простые смертные. Задача о двух поездах и мухе стала уже классической, и звучит она так: предположим, что два поезда, А и В, отправляются навстречу друг другу из точек и В соответственно. Допустим, что расстояние между A и В равно 100 км, скорость поездов — 50 км/ч. В момент отправления муха, сидевшая на локомотиве поезда А, летит в точку В со скоростью 75 км/ч. Она летит быстрее, чем движется поезд А, и в конце концов встречается с поездом В. Достигнув поезда В, она сразу же поворачивает обратно и летит в сторону А. Когда она достигает поезда А, она вновь поворачивает обратно и летит в сторону поезда В, и так далее. Полет мухи закончится, когда оба поезда встретятся. Какое расстояние к этому времени пролетит муха? После трудоемких вычислений студент-отличник показал бы, что длина пути равна сумме следующей бесконечной геометрической прогрессии:

Знаменатель прогрессии равен 1/5, а ее сумма равна d = 75 км.

Проницательный неспециалист получит тот же результат, рассуждая следующим образом: поездам и В встретятся в середине пути, на отметке в 50 км, время в пути составит один час. Следовательно, длительность полета мухи также равна одному часу, а поскольку скорость мухи равна 75 км/ч, то муха в сумме пролетит 75 км. Это решение элементарно, однако подойти к задаче подобным образом способны не все.

Когда один из коллег фон Неймана предложил ему эту задачу для развлечения, ученый незамедлительно дал ответ: «75 км». Коллега был несколько разочарован: «Ну вот, а я надеялся застать тебя врасплох. Ты очень умный, а вот большинство решает эту задачу с помощью суммы ряда». Фон Нейман с удивлением ответил: «А что я, по-твоему, сделал?» Гений среди гениев ни на секунду не задумался о другом решении. Он всего лишь вывел нужный ряд и мгновенно вычислил его сумму. Просто и быстро — если, конечно, вы — фон Нейман.

Западня Ферма

Некоторые известные задачи и простые математические темы попали на киноэкран: математике посвящены, в частности, фильмы «Маленький человек Тейт» (1991), «Куб» (1997), «Мёбиус» (1996), «Пи» (1998), «Энигма» (2001) и многие другие. Однако существует фильм, все действие в котором вращается вокруг математики, — это «Западня Ферма» (2007) режиссеров Луиса Пьедраиты и Родриго Сопеньи. В фильме снимается блестящий актерский ансамбль, а герой Алехо Саураса, молодой специалист с фамилией Галуа (подсказка для внимательного зрителя), играет особую роль — он нашел доказательство гипотезы Гольдбаха. К сожалению, доказательство было украдено, о чем сообщается в начале фильма.

Сюжет фильма полон неожиданных поворотов, один из которых (по всей видимости, он взят из рассказа Эдгара Аллана По) заключается в том, что герои фильма заперты в комнате со сдвигающимися стенами. Эта драматическая история — лишь сюжет фантастического фильма: еще никому не удалось достаточно близко подойти к доказательству гипотезы Гольдбаха. Галуа признает, что его доказательство было ошибочным, однако другой персонаж, по фамилии Гильберт (его роль исполняет Луис Омар), по всей видимости, находит корректное доказательство. К сожалению, Гильберт погибает, а его выкладки оказываются на дне реки. На сегодняшний день гипотеза Гольдбаха по-прежнему не доказана и ждет своего укротителя.

Поделиться:
Популярные книги

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Горчаков. Пенталогия

Пылаев Валерий
Горчаков
Фантастика:
фэнтези
5.50
рейтинг книги
Горчаков. Пенталогия

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Я князь. Книга XVIII

Дрейк Сириус
18. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я князь. Книга XVIII

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Бремя империи

Афанасьев Александр
Бремя империи - 1.
Фантастика:
альтернативная история
9.34
рейтинг книги
Бремя империи