Тайная жизнь чисел. Любопытные разделы математики
Шрифт:
Вскоре Галлей пришел к Ньютону и между делом поинтересовался, какую же форму будет иметь траектория планеты в этой задаче. «Эллипс», — незамедлительно ответил Ньютон. «Почему вы так уверены в этом?» — удивился Галлей. «Потому, что я это вычислил». Галлей наверняка подскочил от удивления — Ньютон не бросал слов на ветер. Однако он не смог найти доказательство среди бумаг и сделал вычисления повторно. Коротко изложим последующие события. Уступив уговорам Галлея, Ньютон записал свои расчеты, в которых применил закон обратных квадратов, и, слово за слово, через 18 месяцев на свет появились «Математические начала натуральной философии» — труд, сыгравший основную роль в формировании нашей картины мира. В нем Ньютон описал закон всемирного тяготения, закон обратных квадратов, эллиптические орбиты
Галлей известен широкой публике тем, что рассчитал орбиту кометы, названной в его честь. Эта комета появляется на звездном небе каждые 75–76 лет, имеет видимую величину 28,2 (в 2003 году) и видна невооруженным глазом. Ученый наблюдал комету в 1682 году и, применив результаты наблюдений, законы механики Ньютона и собственную интуицию, предположил, что именно ее наблюдали Петер Апиан в 1531 году и Иоганн Кеплер в 1607 году. Если эта гипотеза верна, то, согласно расчетам Галлея, в следующий раз комета должна появиться на небе примерно в 1758 году. В 1682 году, Галлей, высказавший свою догадку, был уже немолод, а когда комета появилась в указанном месте точно в назначенное время, он уже был 16 лет как мертв.
Математик и астроном Эдмунд Галлей первым рассчитал орбиту кометы, которая сегодня носит его имя.
Следующая история доказывает, что деньги и желание пустить пыль в глаза часто идут рука об руку. Все началось со швейцарской семьи Бернулли, которой мы позже посвятим несколько строк, и с маркиза Лопиталя — Гийома Франсуа Антуана де Лопиталя, маркиза де Сен-Мэм и графа де Антрмон (1661–1704). С маркизом произошел постыдный случай, в котором оказались замешаны члены упомянутого семейства Бернулли.
Господин маркиз был прекрасным математиком. Также он был богат и хотел использовать деньги на благо математики и, как язвительно замечает историк Уильям Данэм, на собственное благо, поэтому приобрел у гениального Иоганна Бернулли права на все его открытия. Сегодня это кажется нам возмутительным, однако в то время взгляды были иными. Работы Иоганна Бернулли были опубликованы в 1696 году под заглавием «Анализ бесконечно малых для познания кривых линий». По словам Данэма, единственным, что получил маркиз в результаты сделки с Бернулли, стала эта превосходная книга. В 1704 году, уже после смерти Лопиталя, Бернулли рассказал подлинную историю произошедшего. Хотя ученый и говорил правду, ему мало кто поверил: об интриганстве Бернулли знали все, а сам он имел весьма сомнительную репутацию.
В 1921 году были найдены бумаги, подтверждающие, что Иоганн Бернулли действительно был автором большинства открытий, приписываемых Лопиталю, и до сих пор неясно, стремился ли маркиз к незаслуженной славе: во-первых, Лопиталь и сам был математиком высокого уровня, во-вторых, книга была опубликована без указания авторства, а в-третьих, в предисловии содержится множество благодарностей Иоганну Бернулли. Возможно, господин маркиз всего лишь хотел сделать математическое знание доступным для всех.
Обложка первого издания самой известной книги маркиза Лопиталя.
Теперь настало время сказать несколько слов о семье Бернулли. Старшими Бернулли были братья Якоб (1654–1705) и Иоганн (1667–1748), затем историю семьи знаменитых математиков продолжили сын Иоганна, Даниил (1700–1782), и племянник братьев, Николай Бернулли (1687–1759). На этом история семейства не заканчивается: до 1807 года в истории науки отметились целых девять Бернулли, и все они были выдающимися учеными. Сравниться с Бернулли талантом может разве что семья композиторов Бахов, однако математическое семейство вошло в историю также благодаря непростым родственным отношениям. Некоторые распри среди Бернулли стали просто легендарными, например, ссора Иоганна с собственным сыном Даниилом, у которого он украл часть результатов в области гидродинамики. Вот до чего может довести зависть…
Математики-любители вызывают определенное восхищение у простых людей. Любители редко получают свои удивительные знания обычным путем и часто отличаются необычными способностями, как, например, польский математик Стефан Банах (1892–1945) или индиец Сриниваса Рамануджан — это лишь два примера ученых, не имевших классического образования, но занявших место на математическом Олимпе. Однако королем среди любителей был Пьер Ферма (1601–1665) — юрист, читавший книги по арифметике, поля которых были слишком узки для его поистине чудесных доказательств.
Прекрасным примером ученого-самоучки является также Джордж Грин (1793–1841), который совершенно самостоятельно прошел путь к математической мудрости. Он обладал одним странным для британца качеством: в его время в Англии считалось дурным тоном использовать в математическом анализе нотацию Лейбница вместо нотации Ньютона. Однако Грин мало оглядывался на общественное научное мнение и малопонятной нотации Ньютона предпочитал способ записи Лейбница. Такая независимость его мышления удивляет еще больше, если учесть, что он был простым мельником. Грин, сын разбогатевшего пекаря, до 40 лет не осмеливался поступить в Кембридж, и его насилу удалось уговорить. Именно благодаря его трудам сегодня нам известна теорема Грина (она также независимо от него была сформулирована русским математиком Михаилом Остроградским (1801–1861)), влияние которой прослеживается даже в современном дифференциальном и интегральном исчислении:
Работы Грина позднее позволили ученым добиться значительных успехов даже в квантовой механике — науке, совершенно немыслимой в XIX веке. Из «Небесной механики» Лапласа Грин вывел вполне достойную математическую теорию электричества. В последние годы жизни он часто прикладывался к бутылке. Словом, этот мельник — сегодня в его мельнице находится музей — в обычной жизни, скорее всего, был совершенно простым и довольно приятным человеком.
< image l:href="#"/>Одним из результатов практического применения теоремы Грина стало создание планиметра — прибора, позволяющего определить площадь замкнутой фигуры неправильной формы.
Бельгийский физик Жозеф Плато (1801–1883) был большим экспериментатором и получил множество результатов, описывающих персистенцию зрения и принцип действия сетчатки глаза. Он же изобрел фенакистископ. Сегодня изобретения Плато и их производные отошли в область занимательной физики, хотя именно благодаря им стало возможным изобретение кинематографа.