Чтение онлайн

на главную

Жанры

Шрифт:
Один из старинных ботанических трактатов

Генетика растений

В лесах и полях еще много тайн, недоступных глазу. Разгадать их можно, лишь изучая растения на клеточном и генетическом уровне, чем все больше занимаются ботаники, предпочитая приятному пейзажу окуляр микроскопа. Вот некоторые вести из лабораторий, где ботаника-натуралиста теперь встретишь чаще, чем на природе.

Фрагмент из старинного ботанического трактата

В 2003 году большой интерес вызвала работа Энрико Коэна из британского John Innes Centre. Он создал компьютерную модель, показывающую развитие различных частей растения. На ее примере видно, как тесно связаны друг с другом клетки растения. Как только одни клетки начинают расти быстрее других, клеточный конгломерат поворачивается. Процесс его роста определяется тремя основными параметрами: скоростью, то есть временем, что проходит между двумя делениями клеток; анизотропией — наличием оси, вдоль которой преимущественно развивается растение; а также углом, под которым располагаются клетки в момент своего деления относительно воображаемой оси координат. От соотношения этих параметров зависит, в какую сторону вытягивается клеточная структура.

Вот, например, асимметричные цветки львиного зева. Раньше считалось, что асимметрия возникает, когда у какой-либо структуры растения есть одна определенная зона роста. В ней и происходит бурное деление клеток. Однако модель Коэна показывает, что делятся все клетки этой структуры. Только некий химический сигнал — его, по-видимому, подают гормоны или медиаторы, — заставляет новые клетки расположиться асимметрично. Растение обретает свою форму.

Кстати, у животных направление роста клеток тоже указывают химические сигналы. Свидетельством тому — опыты с мухой дрозофилой.

Немецкий ботаник Мартин Хюльскамп показал, как «переговариваются» клетки растения в процессе его роста. Его работа была посвящена образованию волосков на листьях Arabidopsis thaliana. Подобный процесс предполагает четкую координацию клеточных циклов. Достигается она за счет разных транскрибирующих факторов, которые руководят считыванием генов. Одни из таких факторов проявляют себя как активаторы, а другие как ингибиторы — они «тормозят» данный процесс. Как только активаторов становится слишком много, тут же растет число ингибиторов и наоборот. Благодаря этим постоянным колебаниям различные части растения формируются согласованно.

Как интересно! Геном человека, протеом человека, «найден ген лености», «найден ген добродушия»… В последние десятилетия ученые только и перетряхивали наше родовое достояние — набор генов — в поисках причин и следствий «человеческого, слишком человеческого». Homo sapiens стал фигурой более прозрачной, чем прежде, но так и не объяснен до конца. Успехи генетиков, особенно поначалу, привлекали пристальное внимание публики. Ботаники, изучающие генетику растений, не избалованы вниманием, но это не умаляет их достижений. Результаты они получают любопытные.

Вот грядка капусты на даче: кочанчики, тянущиеся в ряд. Чем не научная тайна? Род Brassica, капуста, включает 35 видов. Одни из них опыляют себя сами, а другие — перекрестноопыляемые. Почему так? Как оказалось, мешают процессу самоопыления два гена. Первый отвечает за формирование белковых молекул, расположенных на поверхности завязи, а второй — за синтез коротких пептидов в оболочке зерен пыльцы. Имеется много вариантов той и другой молекулы. Реагируют друг с другом они только в том случае, если принадлежат одному и тому же растению. Продукт их реакции препятствует оплодотворению семяпочки. Самоопыления не происходит. Однако в результате мутации одна из этих двух молекул может измениться. Тогда между ними не произойдет никакой реакции. Растение само опылит себя. Итак, процесс самоопыления обусловлен дефектом одного из двух генов.

В опытах Джун Нашралла из Корнеллского университета дефектный ген заменялся обычным. Растение вновь становилось способным к перекрестному опылению. Как известно, этот вид опыления имеет преимущество перед самоопылением; он приводит к новым комбинациям признаков у дочернего организма. Значит, принцип опыления растения можно изменить; нужно лишь подкорректировать один из генов.

Растения, как и мы, люди, могут приобретать иммунитет. Например, если часть растения, пораженная вредителем, отомрет, а само оно выживет, то, встретив других вредителей, будет активнее сопротивляться им. Крис Л амб из John Innes Centre определил, какая именно белковая молекула отвечает за приобретенный иммунитет. По всей видимости, та самая, что отвечает за перенос жиров и жиросодержаших веществ в тканях растений. Лямб полагает, что этот же белок прицепляет к себе сигнальную молекулу и доставляет ее в отдаленные части растения. Ее сигнал вызывает иммунную реакцию.

Немецкая исследовательница Доротея Бартельс отыскала ген, который помогает растениям переносить жажду. Начиналось все с наблюдения за Craterostigma plantagineum из Южной Африки. В дни засухи это растение может потерять до 95 процентов воды и впадает в спячку; его обмен веществ сокращается почти до нуля. Все дело в определенном гене. По его команде синтезируется альдегид-дегидрогеназа. Она нейтрализует ядовитые вещества, возникающие в тканях растения, когда то страдает из-за жажды. Возможно, подобным геном удастся «оснастить» новые сорта сои, кукурузы и пшеницы, чтобы выращивать зерновые и бобовые в засушливых районах планеты.

Эта работа очень своевременна. По прогнозу, через 20 лет уже около трети населения Земли будет проживать в пустынных и полупустынных районах. В основном это — жители «третьего» мира, которые кормятся дарами своих полей. Для спасения их от голода крайне важно вывести новые, устойчивые к засухе сорта растений.

Поведение растений

Еще одна область исследований — «поведение растений». Первым стал осмыслять его Чарлз Дарвин. Его внимание привлекла венерина мухоловка. Она произрастает в США, в торфяниках Северной и Южной Каролины. Дарвин назвал ее «самым удивительным растением на свете». У нее круглые, мясистые листья, разделенные на две половинки; их запах приманивает насекомых. По краям они усеяны длинными зубцами, неуловимо напоминающими зубы акулы. Правда, мухоловка не перекусывает ими свои жертвы. Она ловит их, захлопывая листья, как половинки капкана. Зубцы сходятся, и насекомое попадает в клетку. Это случается всякий раз, как только муха коснется одного из чувствительных волосков, имеющихся на каждом листе. Теперь, сколько бы ни дергалась цокотуха, пробуя вырваться из капкана, ей это не удастся. Зубцы лишь крепче сожмутся. Наконец из желез, расположенных на поверхности листа, выделится пищеварительный сок. Насекомое погибнет. Спустя 5 — 12 дней ловушка приоткроется, и растение выбросит несъеденные остатки животного.

Венерина мухоловка реагирует на появление жертвы очень быстро. Стоит дотронуться до волоска, и через 0,3 секунды ловушка захлопнется. Если бы растение медлило, добыча ускользала бы от него. Дарвин сделал вывод, что молниеносное движение листьев обладает «всеми признаками животного рефлекса», но у него не было нужных приборов, чтобы объяснить свои наблюдения «на языке науки». Тогда он обратился к одному из самых знаменитых физиологов викторианской эпохи: Джону Бердону-Сандерсону. На протяжении пятнадцати лет тот исследовал венерины мухоловки. Сомнений не оставалось: в ткани растений возникают электрические импульсы. Однако опыты Бердона-Сандерсона, как и выводы Дарвина, были надолго забыты.

Популярные книги

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Волк 4: Лихие 90-е

Киров Никита
4. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 4: Лихие 90-е

Долгие дороги сказок (авторский сборник)

Сапегин Александр Павлович
Дороги сказок
Фантастика:
фэнтези
9.52
рейтинг книги
Долгие дороги сказок (авторский сборник)

Предатель. Вернуть любимую

Дали Мила
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Предатель. Вернуть любимую

Перерождение

Жгулёв Пётр Николаевич
9. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Перерождение

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Дракон

Бубела Олег Николаевич
5. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.31
рейтинг книги
Дракон

Титан империи 5

Артемов Александр Александрович
5. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи 5

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Последний реанорец. Том I и Том II

Павлов Вел
1. Высшая Речь
Фантастика:
фэнтези
7.62
рейтинг книги
Последний реанорец. Том I и Том II

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла