Чтение онлайн

на главную

Жанры

Теория всего (Происхождение и судьба Вселенной)
Шрифт:

При формировании чёрной дыры в результате гравитационного коллапса все движения должны быть ограничены эмиссией гравитационных волн. Поэтому следует ожидать, что довольно скоро чёрная дыра перейдёт в устойчивое состояние. Принято думать, что это финальное, стационарное, состояние зависит от особенностей объекта, коллапс которого породил чёрную дыру. Чёрная дыра может иметь любую форму и размер. Более того, очертания её могут быть изменчивыми, пульсирующими.

Как бы то ни было, в 1967 г. в Дублине была опубликована статья Вернера Израэля, совершившая переворот в изучении чёрных дыр. Израэль показал, что любая невращающаяся чёрная дыра должна иметь идеальную круглую или сферическую форму. Более того, её размер зависит лишь от её массы. В действительности она может описываться частным решением уравнений Эйнштейна, известным с 1917 г., когда Карл Шварцшильд обосновал его вскоре после создания общей теории относительности. Первоначально

результаты Израэля интерпретировались многими, в том числе и им самим, как подтверждение того, что чёрные дыры должны образовываться только при сжатии тел, которые имеют правильную сферическую форму. Поскольку в действительности никакое тело такой формой не обладает, это значит, что в общем гравитационное сжатие должно приводить к «голым сингулярностям». Впрочем, имелась и иная интерпретация результатов Израэля, которую поддерживали в частности Роджер Пенроуз и Джон Уилер. Речь о том, что чёрная дыра должна вести себя подобно шарику жидкости. Даже если объект имел несферическую форму перед коллапсом, породившим чёрную дыру, она примет сферические очертания под действием гравитационных волн. Позднейшие вычисления подтвердили эту точку зрения, и она получила общее признание.

Выводы Израэля относились лишь к чёрным дырам, возникшим из невращающихся тел. Исходя из аналогии с шариком жидкости, следует ожидать, что чёрные дыры, образовавшиеся при коллапсе вращающихся тел, не должны быть идеально круглыми. Они должны иметь вдоль экватора вздутие, образовавшееся из-за вращения. Небольшое вздутие такого типа наблюдается на Солнце. Оно возникло в результате вращения Солнца вокруг его оси с периодом около 25 земных суток. В 1963 г. новозеландец Рой Керр получил для чёрной дыры целый набор решений уравнений общей теории относительности, причём более общих, чем решение Шварцшильда. Керровские чёрные дыры вращаются с постоянной скоростью, а их размер и форма определяются исключительно массой и скоростью вращения. При нулевой скорости вращения чёрные дыры имеют идеально круглую форму и решение для них совпадает с решением Шварцшильда. Однако если скорость не равна нулю, чёрные дыры выпучиваются в экваториальной области. Отсюда напрашивается естественный вывод: если чёрная дыра формируется за счёт коллапса вращающегося тела, то конечное её состояние описывается решениями Керра.

В 1970 г. мой коллега и соученик по аспирантуре Брендон Картер сделал первый шаг к доказательству такого вывода. Он показал, что, коль скоро постоянно вращающаяся чёрная дыра имеет ось симметрии, подобно волчку, её размеры и форма зависят только от массы и скорости вращения. Позднее, в 1971 г., я доказал, что любая стационарно вращающаяся чёрная дыра действительно должна иметь ось симметрии. Наконец, в 1973 г. Дэвид Робинсон из лондонского Кингз-Колледж, используя наши с Картером результаты, окончательно подтвердил, что наш вывод был верен: такого рода чёрные дыры описываются решениями Керра.

Таким образом, после гравитационного коллапса чёрная дыра должна вращаться, но не пульсировать. Более того, её размеры и форма зависят только от массы и частоты вращения, но никак не от природы объекта, коллапс которого породил чёрную дыру. Этот вывод получил известность в форме максимы «У чёрной дыры нет волос». Она подразумевает, что очень большое количество информации о теле, которое коллапсировало, должно потеряться при образовании чёрной дыры, потому что после этого мы можем измерить лишь два параметра данного тела — массу и скорость вращения. Значение этого будет показано в следующей лекции. Теорема о том, что «чёрные дыры не имеют волос», обладает большим практическим значением, ибо резко ограничивает число разновидностей чёрных дыр. Становится возможным детальное моделирование объектов, которые могут содержать чёрные дыры, и сравнение предсказаний этих моделей с наблюдениями.

Исследование чёрных дыр представляет собой довольно редкий в истории науки случай, когда теория была выработана в мельчайших деталях как математическая модель задолго до того, как её правильность подтвердили наблюдения. Конечно, это обстоятельство служило основным аргументом скептиков. Как можно верить в реальность объектов, существование которых подтверждается только вычислениями, основанными на сомнительной общей теории относительности?

Однако в 1963 г. Мартен Шмидт, астроном обсерватории Маунт-Паломар в Калифорнии, обнаружил слабый, напоминающий звезду объект в направлении источника радиоволн, получившего обозначение 3C273 (потому что он стоит под номером 273 в третьем выпуске Кембриджского каталога радиоисточников). Измерив красное смещение нового объекта, Шмидт обнаружил, что оно слишком велико для того, чтобы его можно было приписать действию гравитационного поля. Если бы красное смещение имело гравитационную природу, объект оказался бы настолько массивным и близким к нам, что ощущалось бы его влияние на орбитальное движение планет Солнечной системы.

Это заставляло предположить, что красное смещение вызвано расширением Вселенной, а значит, объект располагается очень далеко от нас. А для того чтобы мы могли его видеть на столь большом расстоянии, он должен быть исключительно ярким и излучать огромное количество энергии.

Единственным мыслимым механизмом, способным вырабатывать столько энергии, представлялся гравитационный коллапс, но не отдельной звезды, а всей центральной области галактики. Позднее был обнаружен целый ряд подобных квазизвёздных объектов, или квазаров, и у всех них отмечалось большое красное смещение. Но все они находятся слишком далеко и слишком сложны для наблюдений, которые могли бы дать убедительные доказательства существования чёрных дыр.

Следующее обнадёживающее свидетельство того, что чёрные дыры всё-таки существуют, появилось в 1967 г., когда аспирантка Кембриджского университета Джоселин Белл обнаружила, что некоторые небесные объекты излучают регулярные импульсы радиоволн. Поначалу Джоселин и её научный руководитель Энтони Хьюиш даже решили, что, возможно, ими установлен контакт с инопланетной цивилизацией в другой галактике. В самом деле, я помню, как, докладывая на семинаре о своём открытии, они обозначили первые четыре обнаруженных ими источника аббревиатурой LGM 1–4, где LGM означало Little Green Men — маленькие зелёные человечки (как принято было называть инопланетян).

В конце концов, однако, и они, и все остальные пришли к менее романтическому выводу, что эти объекты, названные пульсарами, представляют собой вращающиеся нейтронные звёзды. Пульсары испускают импульсы радиоволн в результате сложного взаимодействия их магнитных полей с окружающей материей. Это была плохая новость для авторов космических боевиков, но большое утешение для немногих учёных, веривших в то время в чёрные дыры. И первое реальное свидетельство того, что нейтронные звёзды существуют. Радиус нейтронной звезды — около 15 километров, что лишь в несколько раз больше критического радиуса, при котором звезда становится чёрной дырой. Если одна звезда может сжаться до столь малых размеров, резонно ожидать, что и другие звёзды способны уменьшиться даже до ещё меньших размеров и стать чёрными дырами.

Как можем мы надеяться обнаружить чёрные дыры, если они по определению не испускают никакого света? Это даже не поиски чёрной кошки в тёмной комнате — это поиски чёрной кошки в угольной яме! К счастью, способ есть, поскольку, как указывал ещё Джон Мичелл в своей «первопроходческой» статье 1783 г., чёрная дыра оказывает гравитационное воздействие на близлежащие объекты. Астрономы выявили целый ряд систем, в которых две звезды движутся одна вокруг другой, связанные гравитацией. Они также обнаружили системы, в которых единственная видимая звезда обращается вокруг невидимого компаньона.

Конечно, нельзя с ходу утверждать, что этот компаньон — чёрная дыра. Возможно, это просто звезда, свет которой недостаточно ярок для того, чтобы мы могли её наблюдать. Однако некоторые из таких систем (например, Х-1 в созвездии Лебедь) являются также очень мощными источниками рентгеновского излучения. Наилучшее объяснение этого феномена заключается в том, что рентгеновские лучи испускаются материей, выброшенной с поверхности видимой звезды. Падая в направлении невидимого компаньона, она приобретает спиральное движение, — как вода, устремляющаяся в слив ванны, — очень сильно разогревается и испускает рентгеновские лучи. Чтобы подобный механизм работал, невидимый объект должен быть очень маленьким — таким, как белый карлик, нейтронная звезда или чёрная дыра.

Итак, из наблюдаемого движения видимой звезды можно вывести минимально возможную массу невидимого объекта. Например, в системе Лебедь Х-1 невидимое тело по массе примерно в шесть раз превосходит наше Солнце. Согласно выводам Чандрасекара, это слишком много для того, чтобы невидимка был белым карликом. Он слишком велик и для нейтронной звезды. А значит, это должна быть чёрная дыра.

Существуют и другие модели для объяснения феномена Лебедя Х-1, не включающие в себя чёрные дыры, но все они довольно натянуты. Присутствие в этой системе чёрной дыры кажется единственным разумным объяснением наблюдаемых особенностей. Несмотря на это, я заключил пари с Кипом Торном из Калифорнийского технологического института о том, что в действительности Лебедь Х-1 не содержит чёрной дыры. Для меня это своего рода страховка. Я много работал над проблемой чёрных дыр, и все мои труды пойдут прахом, если окажется, что чёрных дыр не существует. Но если чёрной дыры в системе Лебедь Х-1 не окажется, я хоть отчасти утешусь, выиграв пари и получив четырёхгодичную подписку на журнал Private Eye. Если же чёрная дыра там есть, Кип будет бесплатно получать Penthouse, но всего лишь год, потому что когда мы бились об заклад в 1975 г., то были на 80 % уверены, что чёрная дыра в созвездии Лебедь имеется. Сегодня, я бы сказал, мы уверены в этом на 95 %, однако наш спор ещё не разрешён.

Поделиться:
Популярные книги

Поступь Империи

Ланцов Михаил Алексеевич
7. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Поступь Империи

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Провинциал. Книга 7

Лопарев Игорь Викторович
7. Провинциал
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Провинциал. Книга 7

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Болотник 3

Панченко Андрей Алексеевич
3. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 3

Темный Охотник 3

Розальев Андрей
3. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник 3

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Восход. Солнцев. Книга X

Скабер Артемий
10. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга X

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII