Термодинамика реальных процессов
Шрифт:
Ранее закон (222) я тоже по инерции называл законом диссипации, хотя мне уже было известно, что мера количества термического вещества в противоположность энтропии способна не только возрастать, но и уменьшаться; об этом говорится, например, в книге [11, с.143], где термическое вещество именуется термическим зарядом. Наконец, в монографии [21, с.86] я окончательно перешел к новому термину «экранирование», который лучше отражает реальную действительность, чем прежний. Ведь фактически никакого рассеяния, обесценивания энергии в природе не происходит, так как экранированное термическое вещество способно не только выделяться, но и поглощаться: прежде чем выделиться, оно должно сначала где-то поглотиться в соответствующем процессе. Этим самым обеспечивается непрерывный
Процессы прямого и обратного направлений можно трактовать как процессы плюс- и минус-трения, диссипации и минус-диссипации. Все это позволяет по-новому взглянуть на проблему обратимости и необратимости реальных процессов, возникшую на основе теории Клаузиуса, а также навести соответствующий порядок в имеющихся определениях, понятиях и терминах [18,20,21] [ТРП, стр.194-197].
5. Седьмое начало ОТ, или обобщенный закон заряжания.
В ходе стыковки первого и второго начал ОТ с четырьмя остальными были сформулированы законы заряжания и экранирования. В результате для определения энергии мы располагаем уже тремя типами различных уравнений (31), (220) и (222). Требуется выяснить, не противоречат ли эти уравнения друг другу, не дублируют ли одно другое и как связаны между собой энергии U , U3 и UЭ .
Чтобы правильно ответить на эти и другие вопросы, попытаемся мысленно синтезировать нашу систему, последовательно заряжая ее различными чистыми веществами - не ансамблями, - начиная с нуля, то есть с единичного кванта какого-либо вещества. В данном случае контрольную поверхность по необходимости пронизывают все вещества, пошедшие на образование системы, включая термическое, которое частично расходуется на изменение теплового состояния, а частично экранируется, уже находясь внутри системы. Следовательно, в рассматриваемых условиях все вещества без исключения проигрывают на контрольной поверхности роль основных и поэтому в соответствии с уравнением (31) определяют полную энергию ансамбля U , полное количество его поведения. Те вещества, которые продолжают выполнять эту роль внутри системы, дают энергию заряжания U3 , определяемую уравнением (220) закона заряжания. Часть термического вещества, которая не участвует в заряжании, экранируется в системе, она дает энергию UЭ , определяемую уравнением (222) закона экранирования. Такова субординация энергий U , U3 и UЭ .
Не менее наглядно суть величин U , U3 и UЭ выступает, если происходит распад ансамблей на отдельные простые вещества. При этом система совершает работу, проталкивая через контрольную поверхность все свои вещества. Работа совершается в процессе силового поведения вещества, причем мерами качества поведения служат интенсиалы, являющиеся аналогами силы, а мерой количества поведения — энергия, равная работе и определяемая уравнением (31). При полном распаде высвобождается вся энергия ансамбля U , соответствующая полному количеству его силового поведения. Из этого количества доля U3 принадлежит веществам, участвовавшим в заряжании, а доля UЭ - термическому веществу, которое играло роль экранированного.
Следовательно, величина U состоит всего из двух частей: энергии заряжания U3 и энергии экранирования UЭ , то есть
U = U3 + UЭ (224)
или в дифференциальной форме
dU = dU3 + dUЭ = dQ3 + dQЭ = ? dPdE – dPdE (225)
Известное различие смысла слагаемых правой части этого уравнения делает нецелесообразным объединение их в одно слагаемое.
Если система располагает несколькими степенями свободы, то общее изменение энергии получается в виде соответствующей суммы, причем знак каждого из слагаемых определяется по правилам, изложенным выше применительно к уравнениям (220) и (222).
Дифференциальное уравнение (225) выражает седьмое начало ОТ. Оно определяет изменение энергии системы в виде суммы двух слагаемых, первое из них соответствует изменению энергии, обусловленному работами заряжания, а второе - работами экранирования.
Таким образом, седьмое начало ОТ объединяет законы заряжания и экранирования. При этом
Седьмое начало похоже на первое тем, что оба они определяют энергию системы. Однако между ними имеются и существенные различия. Первое начало выражает энергию через работы (34), которые совершаются на контрольной поверхности и представляют собой универсальные меры количества воздействия на систему со стороны окружающей среды. Иными словами, первое начало определяет энергию через внешние по отношению к системе характеристики. В противоположность этому седьмое начало определяет энергию через работы, которые выражаются с помощью внутренних характеристик системы (см. формулы (220) и (222)). Отсюда должно быть ясно, что первое и седьмое начала не противоречат и не дублируют, а дополняют друг друга.
Седьмое начало найдено в ходе взаимной припасовки шести предыдущих, без него совокупность начал оказывается незамкнутой, ибо в ней отсутствует самое важное, обобщающее, связующее звено, которое призвано объединить первые шесть начал в единое гармоничное целое. Кроме того, благодаря седьмому началу удается по-новому взглянуть на первое и обнаружить в нем определенные существенные недостатки. Вследствие этого седьмое приобретает не меньшую, если не большую, ценность для теории и практики, чем первое. Седьмое начало впервые было сформулировано в ОТ [29, с.6], оно особенно необходимо для целей переосмысливания прежней теории и получения на этой основе новых результатов, не доступных для традиционных представлений.
В свете изложенного становится ясно, что величины U , U3 и UЭ различаются между собой весьма существенно. Энергия U сохраняет за собой право именоваться универсальной мерой количества поведения, которым располагает ансамбль. Энергии U3 и UЭ тоже являются мерами количества поведения, но каждая из них характеризует только ограниченные частные свойства ансамбля, связанные с эффектами заряжания и экранирования, на частный характер этих энергий указывают индексы «З» и «Э».
Таким образом, в общем случае система располагает энергией U . В процессах заряжания запасается часть этой энергии, равная U3 . Величина U3 поэтому является в известном смысле свободной энергией, ибо она получается в актах простого подвода или отвода различных веществ. В противоположность этому энергия UЭ обусловлена эффектом экранирования, связывания термического вещества внутри ансамбля. Это может служить основанием для того, чтобы наименовать величину UЭ связанной энергией.
Данное здесь определение понятий «свободная и связанная энергии» существенно отличается от того, что в свое время было введено в термодинамику Гельмгольцем. Новое определение является вполне естественным, простым и наглядным, тем более что энергия UЭ имеет прямое отношение к связыванию между собой всех веществ ансамбля.
Действительно, при обсуждении обобщенного третьего закона Ньютона (параграфы 5 гл. X и 7 гл. XII) отмечалось, что порции разнородных веществ удерживаются друг подле друга в ансамбле не силами, а энергией. Соответствующие ей работы совершаются в ходе как специфических, так и универсального взаимодействий. Первые могут не только упрочнять ансамбль, но и ослаблять имеющиеся связи. Например, гравитационное взаимодействие между порциями массы упрочняет связи, а электрическое между одноименными квантами зарядов их ослабляет. Универсальное взаимодействие упрочняет ансамбль. При прочих равных условиях с ростом количества экранированного термического вещества энергия UЭ и интенсиалы, а следовательно, и интенсивность всех взаимодействий, включая универсальное, возрастает, а значит, растет и энергия связи внутри ансамбля, его прочность.