Чтение онлайн

на главную

Жанры

Термодинамика реальных процессов
Шрифт:

В общем случае соотношение между энергиями U3 и UЭ может быть самым различным. В первую очередь это зависит от свойств ансамбля, определяемых уравнением состояния, от условий взаимодействия системы и окружающей среды и т.д. В отдельных частных случаях удается легко найти указанное соотношение. Одновременно очень четко выявляется ограниченность в известном смысле первого начала термодинамики.

Чтобы лучше разобраться в этом вопросе, проинтегрируем правую часть уравнения (220) по Р , а уравнения (222) – по Е . Тогда из выражения (225) получается следующий любопытный результат:

dU = ? PdE – ЕdР (226)

Применив это выражение к условиям образования ансамбля, когда его интенсиал возрастает, а экранированное термическое вещество поглощается, будем иметь

dU = PdE +

ЕdР = d(РЕ) (227)

Проинтегрируем это уравнение и положим константу интегрирования равной нулю. Находим

U = РЕ (228)

Формула (228) хорошо проясняет смысл прежних равенств (210) и (215), найденных с помощью пятой и шестой характеристических функций. Одновременно становится понятным, почему длительное применение в термодинамике свободной энтальпии (167), энтальпии (184) и свободной энергии (199) не столкнулось с противоречиями - ведь эти характеристические функции сконструированы из слагаемых, в число которых входит энергия и произведения интенсиала на экстенсор. Причина здесь простая: структуры энергии (см. формулу (228)) и указанных произведений тождественны между собой. В последнее время, опираясь на такую структуру энергии, много весьма ценных результатов получил болгарский ученый М. Механджиев [54, 57].

Теперь должно быть совершенно ясно, что возможность выражать энергию с помощью слагаемых типа (228) есть следствие существования одновременно двух эффектов: заряжания и экранирования. Интересующее нас соотношение между энергиями U3 и UЭ приобретает самый простой вид в частном случае идеальной системы, когда коэффициенты уравнения состояния А и К постоянны. В этих условиях энергия заряжания U3 в точности равна энергии экранирования UЭ , в совокупности они составляют полную энергию U (об этом более подробно говорится в параграфе 3 гл. XVI). В других случаях разница между величинами U3 и UЭ оказывается весьма значительной, как это имеет место, например, в условиях лазерной накачки, когда система достигает высокой степени неравновесности. Луч лазера - это и есть выделяющееся термическое вещество, которое входит в состав ансамблей, именуемых фотонами. В общем случае выделение (и поглощение) термического вещества может происходить не только с фотонами: все зависит от конкретных свойств системы и окружающей среды, в частности, известные различия в механизме переноса могут наблюдаться в газах, жидкостях и твердых телах. В химии часто соблюдается условие (228), этим и объясняются результаты М. Механджиева [54, 57].

Первое начало термодинамики, определяющее энергию через внешние работы, не способно различать эффекты заряжания и экранирования, происходящие внутри системы. Поэтому оно не позволяет судить о состоянии последней, ибо остается неясным вопрос о том, какая часть подведенного термического вещества расходуется на эффект заряжания, а какая - на эффект экранирования. В результате с помощью первого начала можно легко определить изменение энергии dU , но нельзя - полную энергию U , если только не учесть все работы, затраченные на образование ансамбля, начиная с нуля, что, однако, сделать очень трудно. От этого недостатка свободно седьмое начало ОТ.

При решении различных конкретных задач с применением седьмого начала важно внимательно относиться к физической сути изучаемых процессов, это позволит избежать ошибок в расчетах и заключениях. В качестве простейшего примера можно сослаться на процесс стационарного течения несжимаемой вязкой жидкости, рассмотренный в работах [18, с.226; 21, с.39]. В условиях двух степеней свободы - кинетической и гидродинамической (механической), - если жидкость движется по цилиндрическому каналу постоянного сечения, то давление с расстоянием уменьшается, что свидетельствует о наличии эффекта экранирования. Работа экранирования (плюс-трение, теплота трения выделяется) равна разности давлений, умноженной на объем протекшей жидкости. При этом скорость потока не изменяется, то есть кинетическая степень свободы себя не проявляет, эффект кинетического заряжания жидкости отсутствует. Эффект механического заряжания также отсутствует, ибо жидкость

несжимаема.

Если канал необходимым образом расширяется, тогда скорость потока с расстоянием уменьшается, а давление возрастает и на выходе может стать даже больше, чем на входе. Однако это вовсе не значит, что жидкость должна потечь в обратном направлении, в сторону уменьшающегося давления. Это только означает, что в дело вмешался эффект кинетического заряжания жидкости и надо быть начеку, чтобы не ошибиться. При этом эффект механического заряжания по-прежнему отсутствует из-за несжимаемости жидкости. Во всех случаях отделить эффект заряжания от эффекта экранирования помогает уравнение состояния, определяющее первый эффект, и знание сопротивления системы, характеризующего второй эффект. В нашем примере роль уравнения состояния играет известное основное уравнение гидродинамики Бернулли, связывающее квадрат скорости (кинетический интенсиал) с давлением (механический интенсиал). Рассматриваемый расширяющийся канал интересен в том отношении, что жидкость в нем движется в сторону возрастающего механического интенсиала под действием достаточно большой разности второго - кинетического - интенсиала. Некоторые другие подобные примеры излагаются в цитированной выше работе [18].

Дополнительные интересные свойства энергий U , U3 и UЭ выясняются, если рассмотреть один чрезвычайно любопытный пример возможного - гипотетического пока - поведения полностью изолированной системы. Изолированной, или замкнутой, мы называем систему, если через ее контрольную поверхность не проходят никакие вещества (dEk = 0). В этих условиях уравнение первого начала (31) дает dU = 0 , а из уравнения седьмого начала (225) получается

dU3 + dUЭ = 0 (229)

и

U3 + UЭ = U = const (230)

Отсюда видно, что в изолированной системе не запрещены процессы взаимного преобразования энергий U3 и UЭ , при этом возрастание энергии U3 должно сопровождаться уменьшением UЭ и наоборот. Кроме того, согласно второму началу ОТ, в изолированной системе количества всех веществ сохраняются неизменными, то есть Еk = const , где под Еk допустимо понимать соответствующее полное количество любого данного вещества системы в целом. Тогда из уравнений (220) и (222) должно непосредственно следовать, что изменение энергий U3 и UЭ возможно только за счет изменения соответствующих интенсиалов. А это значит, что уравнения (220) и (222) в принципе допускают взаимные преобразования активностей различных степеней свободы изолированной системы, то есть изменения одних интенсиалов за счет других и наоборот.

Процессы взаимного изменения интенсиалов равносильны «перекачиванию» экранированного термического вещества из каналов одних степеней свободы системы в каналы других, ибо в одних каналах количество этого вещества уменьшается, а, в других возрастает и наоборот. В этом смысле степени свободы несколько напоминают сообщающиеся сосуды, заполненные экранированным термическим веществом. Перекачивание осуществляется при неукоснительном соблюдении семи начал ОТ, причем во всех этих процессах особая роль принадлежит, как непосредственно ясно, термическому веществу, которое может превращаться из экранированного в основное и наоборот, но его общее количество сохраняется строго неизменным.

Напомню, что интенсиалами служат квадрат скорости, температура, давление, электрический и химический потенциалы и т.д. Следовательно, седьмое начало в принципе разрешает изменять скорость, температуру, давление, электрический и химический потенциалы и т.д. изолированной системы с помощью ее внутренних средств («сил»). Этот вывод хорошо перекликается с обобщенным третьим законом Ньютона, допускающим при взаимодействии неравенство сил действия и противодействия. Неравенство сил имеет своим следствием возможность нарушения закона сохранения количества и момента количества движения, что может сопровождаться изменением скорости изолированной системы - ее «движением за счет внутренних сил». Ниже, в гл. XXI, рассматриваются некоторые конкретные способы осуществления подобных экзотических процессов, что подтверждает справедливость всех этих выводов.

Поделиться:
Популярные книги

Дайте поспать! Том III

Матисов Павел
3. Вечный Сон
Фантастика:
фэнтези
5.00
рейтинг книги
Дайте поспать! Том III

Путь Чести

Щукин Иван
3. Жизни Архимага
Фантастика:
фэнтези
боевая фантастика
6.43
рейтинг книги
Путь Чести

Энфис 2

Кронос Александр
2. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 2

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Книга пяти колец. Том 3

Зайцев Константин
3. Книга пяти колец
Фантастика:
фэнтези
попаданцы
аниме
5.75
рейтинг книги
Книга пяти колец. Том 3

Диверсант

Вайс Александр
2. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Диверсант

Ученичество. Книга 2

Понарошку Евгений
2. Государственный маг
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ученичество. Книга 2

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Последний попаданец 9

Зубов Константин
9. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 9

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Неестественный отбор.Трилогия

Грант Эдгар
Неестественный отбор
Детективы:
триллеры
6.40
рейтинг книги
Неестественный отбор.Трилогия

Хозяйка дома на холме

Скор Элен
1. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка дома на холме

Гром над Академией. Часть 2

Машуков Тимур
3. Гром над миром
Фантастика:
боевая фантастика
5.50
рейтинг книги
Гром над Академией. Часть 2